• Title/Summary/Keyword: MODFLOW 모형

Search Result 78, Processing Time 0.027 seconds

An Analysis of Groundwater Flow at Bugok Area Using MODFLOW (MODFLOW 모형을 이용한 부곡온천지역 지하수 유동해석)

  • Chung, Sang-Ok;Lee, Young-Dae;Min, Byung-Hyung
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.79-88
    • /
    • 1994
  • This study was conducted to analyse groundwater flow in the Bugok hot spring area using the MODFLOW model which can simulate three dimensional groundwater flow both in confined and unconfined aquifers. Based on this study the following conclusions were obtained: 1) The hydraulic conductivity and the specific storage of the aquifer were 0.0135 m/day and 0.020, respectively, and the model-predicted groundwater elevation agreed well with the observed one. 2) Simulation results showed that the groundwater level declines at the end of the one-year simulation period when the annual recharge rate is small and the annual pumping rate high, which is the worst combination. Except that combination, the groundwater level does not decline at the end of one-year simulation period indication the pumping rates used were allowable. 3) The safe yield depends upon the magnitudes of the recharge and pumping rates. The pumping rate should not produce excess decline of groundwater level around April when the water level is the lowest in a year.

  • PDF

Sensitivity Analysis of the Groundwater Flow Model Parameters in a Small Rural Watershed (농촌 소유역에서 지하수 유동 모형의 매개변수 민감도 분석)

  • Park, Ki-Jung;Chung, Sang-Ok
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.687-693
    • /
    • 2004
  • The MODFLOW simulated results with varying input parameter values were compared and analyzed. To understand the relative importance of the input parameters, sensitivity analysis was carried out. The amount of sustainable yield was analyzed with respect to the hydraulic conductivity, specific yield, specific storage, aquifer thickness and the distance of the wells from the river. The results of sensitivity analysis showed that inflow from the river and the aquifer storage were sensitive to the specific yield and aquifer thickness. Sustainable yield was sensitive to the hydraulic conductivity and aquifer thickness. The results of this study can be used as a basic information for groundwater development and management plannings considering regional characteristics.

Analysis of Hydrological Processes for Musim River Basin by Using Integrated Surface water and Groundwater Model (지표수-지하수 통합모형을 이용한 무심천 유역의 수문과정 해석)

  • Kim, Nam-Won;Chung, Il-Moon;Lee, Jeong-Woo;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.419-430
    • /
    • 2007
  • Integrated modelling of surface water and groundwater has become important to satisfy the growing demands for sustainable water resources and improved water quality. In this study, the integrated model of the semi-distributed watershed model, SWA T and the fully-distributed groundwater flow model, MODFLOW is applied to Musirn river basin for the purpose of investigating its applicability to reproduce watershed-scale hydrological processes. This objective is accomplished by first demonstrating good agreement between the simulated discharge hydrographs with the measured hydrographs for the period of 2001 -2004 while simultaneously calibrating the calculated groundwater level distribution to observation wells. Next, the integrated model is used to evaluate the effect of different temporal precipitation averages on hydrodynamic processes of streamflow, percolation, recharge and groundwater discharge. Moreover, comprehensive simulations are performed to present the relationships between monthly precipitation and each hydrological component, and to analyze the temporal-spatial variability of recharge. The results show that the components are highly interrelated, and that the heterogeneity of watershed characteristics such as subbasin slope, land use, soil type causes a significant spatial variation of recharge. Overall it is concluded that the model is capable of reproducing the temporally and spatially varied surface and subsurface hydrological processes at the watershed scale.

지하수 유동(MODFLOW) 및 수질(MOC3D) 모형과 ArcView를 결합한 지하수환경 예측 시스템의 개발

  • 김준현;한영한;김정욱;최윤호
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.1-4
    • /
    • 1999
  • This study was performed to develop an information processing system for the sound conservation of soil and groundwater resources. The system contains the geographic information system, and the numerical model of groundwater flow and contamination. Numerical models (MODFLOW,MOC3D) and GIS (ArcView) were integrated for the construction of an integrated management system of subsurface environment. The developed system was applied to the management of three mineral water companies located in clean mountain area. The impact of pumping over the overall catchment basin was modeled using the developed system for the decision of future management criteria.

  • PDF

Simulation of Groundwater Variation Characteristics of Hancheon Watershed in Jeju Island using Integrated Hydrologic Modeling (통합수문모형을 이용한 제주 한천유역의 지하수 변동 특성 모의)

  • Kim, Nam-Won;Na, Hanna;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.515-522
    • /
    • 2013
  • To investigate groundwater variation characteristics in the Hancheon watershed, Jeju Island, an integrated hydrologic component analysis was carried out. For this purpose, SWAT-MODFLOW which is an integrated surface-groundwater model was applied to the watershed for continuous watershed hydrologic analysis as well as groundwater modeling. First, ephemeral stream characteristics of Hancheon watershed can be clearly simulated which is unlikely to be shown by a general watershed hydrologic model. Second, the temporally varied groundwater recharge can be properly obtained from SWAT and then spatially distributed groundwater recharge can be made by MODFLOW. Finally, the groundwater level variation was simulated with distributed groundwater pumping data. Since accurate recharge as well as abstraction can be reflected into the groundwater modeling, more realistic hydrologic component analysis and groundwater modeling could be possible.

Estimation of Distributed Groundwater Recharge in Jangseong District by using Integrated Hydrologic Model (통합수문모형을 이용한 장성지역의 분포형 지하수 함양량 추정)

  • Chung, Il-Moon;Park, Seunghyuk;Lee, Jeong Eun;Kim, Min Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.517-526
    • /
    • 2018
  • As groundwater recharge shows the heterogeneity in space and time due to land use and soil types, estimating daily recharge by integrated hydrologic analysis is needed. In this work, the SWAT-MODFLOW model was applied to compute daily based groundwater recharge in Jangseong region. The accuracy of the model was evaluated by comparing the observed and calculated values of the unsteady groundwater flow levels after calibrating the observed and calculated flow rates of the stream for a hydrological analysis. The estimated hydrologic components showed a strong correlation with each other and significant spatial variations regarding the groundwater recharge rate in accordance with the heterogeneous watershed characteristics such as subbasin slope, land use, and soil type. Overall, it was concluded that the coupled hydrologic models were capable of simulating the spatial variation with respect to the hydrologic component process in surface water and groundwater. The average recharge rate was estimated at approximately 20.8%.

Analysis on the Hydrologic Components Considering Groundwater Development of the Pyoseon Watershed in Jeju Island (제주 표선유역의 지하수 개발을 고려한 수문성분해석)

  • Kim, Nam-Won;Chung, Il-Moon;Na, Han-Na;Yoo, Sang-Yeon;Yang, Sung-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.2021-2025
    • /
    • 2010
  • 우리나라 대표적인 도서지역인 제주도는 대부분의 하천이 평상시 건천의 형태로 유지되며, 일정한 강우가 도달해야만 지표유출이 발생하는 경우가 대부분이다. 이와 같은 하천특성은 내륙과 매우 상이하여 일반적으로 사용되는 유역 수문해석 방법으로는 정확한 수문성분의 산정을 기대하기 어렵다. 이에 본 연구에서는 완전연동형 지표수-지하수 결합모형인 SWAT-MODFLOW을 이용하여 지표수 유출성분과 지하수 유동변화 및 지하수 개발까지 고려한 제주 표선유역의 통합수문성분 해석을 수행하였다. 특히 SWAT-MODFLOW에 포함된 양수모듈(MODFLOW의 well package 와 SWAT의 물이동 옵션 결합)을 이용하여 198개의 현 양수정 자료를 모의하였고, 현재 양수량, 현재양수량의 10배, 20배로 증대시켜 가며 수문성분 변화를 살펴보았다. 양수를 통해 지하수를 개발하여 사용하면 실질적으로 기저유출량의 감소가 발생하는 것으로 나타났고, 이러한 영향은 상류부 보다는 하류부에서 크게 작용할 것으로 판단된다. 그러나 제주도 지형적인 특성상 자연적으로 대수층으로 함양된 지하수가 대부분 바다로 유출, 손실되고 있으나 지하수를 양수할 경우, 손실량의 일부는 지하수 개발을 통해 효과적으로 사용됨으로써 제주 수자원의 추가 수자원확보량으로서 활용될 수 있을 것이다.

  • PDF

Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site (수막재배지역에서 일최저기온과 지하수 이용량의 상관관계를 이용한 지하수위 변화 분석)

  • Chang, Sunwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • Water curtain cultivation (WCC) systems in Korea have depleted water resources in shallow aquifers through massive pumping of groundwater. The goal of this study is to simulate the groundwater variations observed from massive groundwater pumping at a site in Cheongweon. MODFLOW was used to simulate three-dimensional regional groundwater flow, and the SWAT (Soil and Water Assessment Tool) watershed hydrologic model was employed to introduce temporal changes in groundwater recharge into the MODFLOW model input. Additionally, the estimation method for groundwater discharge in WCC areas (Moon et al., 2012) was incorporated into a groundwater pumping schedule as a MODFLOW input. We compared simulated data and field measurements to determine the degree to which winter season groundwater drawdown is effectively modeled. A simulation time of 107 days was selected to match the observed groundwater drawdown from November, 2012 to March, 2013. We obtained good agreement between the simulated drawdown and observed groundwater levels. Thus, the estimation method using daily minimum temperatures, may be applicable to other cultivation areas and can serve as a guideline in simulating the regional flow of riverside groundwater aquifers.