• Title/Summary/Keyword: MO-SiO$_2$

Search Result 313, Processing Time 0.023 seconds

Influences of the Molar Ratio of $Mo/MoO_3$ on Characteristics of $MoSi_2-Al_2O_3$ composites by SHS Methods (연소합성법에 의한 $MoSi_2-Al_2O_3$ 복합재료의 특성에 미치는 $Mo/MoO_3$ 몰비의 영향)

  • 장윤식;이윤복;김용백;김인술;박흥채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1209-1216
    • /
    • 1996
  • MoSi2-Al2O3 composites were prepared by thermal explosion mode of self-propagating high temperature syn-thesis (SHS) using element powders of MoO3 Mo Si and Al. The combustion products of MoSi2 which have 10, 20, 30 and 40 wt% Al2O3 showed the molten state in the range of Mo to MoO3 6:1-9.5:1, 2:1-8:1, 1:1-5:1, and 1:1-3:1 (molar ratio) respectively. The combustion products which made least seperation the molten phase from the slag phase were in Mo/MoO3=9, 5:1, 8:1, 5:1 and 3:1 (molar ratio) respectively. Particles size of MoSi2 and Al2O3 in the combustion product were decreased as the molar ratio of Mo to MoO3 increase. By XRD analysis only MoSi2 and $\alpha$-Al2O3 peaks were identified in the combusion products, In case of MoSi2 containing 20wt% Al2O3 5.1wt% Al existed into MoSi2 grains and 30.7wt% Si and 7.7wt% Mo existed into Al2O3 grains. The relative density of MoSi2 containing 10, 20, 30 and 40 wt% Al2O3 were 82.7, 85.2, and 81.9% respectively. The fracture strength of MoSi2-Al2O3 composites increased with increasing Al2O3 and that of MoSi2-20wt% Al2O3 composite was 195 MPa.

  • PDF

Study on Sliding Wear Characteristics and Processing of MoSi

  • Park, Sungho;Park, Wonjo;Huh, Sunchul
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-249
    • /
    • 2012
  • In this study, a monolithic MoSi2 matrix reinforced with 20 vol% SiC particles, a SiC/MoSi2 composite matrix reinforced with 20 vol% ZrO2 particles, and a ZrO2/MoSi2 composite were fabricated using hot press sintering at $1350^{\circ}C$ for 1 h under a pressure of 30 MPa. The Vickers hardness and sliding wear resistance of the monolithic MoSi2, ZrO2/MoSi2, and SiC/MoSi2 composite were investigated at room temperature. A wear behavior test was carried out using a disk-type wear tester with a silicon nitride ball. The ZrO2/MoSi2 composite showed an average Vickers hardness value and excellent wear resistance compared with the monolithic MoSi2 and SiC/MoSi2 composite at room temperature.

Synthesis and Sinteirng of $MoSi_2$ by SHS Process (SHS법에 의한 고온발열체용 $MoSi_2$의 합성 및 소결)

  • 이승재;장윤식;김인술;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1085-1091
    • /
    • 1995
  • Molybdenum disilicide (MoSi2) was synthesized from Mo, MoO3, Si and Al powders by self-propagating high temperature synthesis (SHS). The effect of processing parameters such as Mo/MoO3 molar ratio, Ar gas pressure in the reactor and pressing pressure of compacts in synthesis of MoSi2 were investigated. h-MoSi2 was transformed into t-MoSi2 with increasing the Mo/MoO3 mole ratio, and only t-MoSi2 phase was identified above 3.5 : 1 (molar ratio). The synthesized phases did not change with the variation of Ar gas pressure and pressing pressure of compacts. It was found that the combustion temperature was above 2,50$0^{\circ}C$. The products were separated into MoSi2 (s) and $\alpha$-Al2O3 by the difference of their specific grativities. Bending strength, hardness and density of sintered specimen exhibited 82 MPa, 5.368 GPa and 5.43 g/㎤, respectively.

  • PDF

Preparation and Catalytic Activity of Morphologically Controlled MoO3/SiO2 for Hydrodesulfurization (결정상과 분산도의 조절이 가능한 MoO3/SiO2 촉매의 제조 및 탈황반응특성 연구)

  • Ha, Jin-Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.231-236
    • /
    • 1999
  • Several series of morphologically controlled $MoO_3$/$SiO_2$ catalysts were prepared, characterized, and tested for hydrodesulfurization (HDS) of dibenzothiophene (DBT) activity. Molybdenum surface loaded with 4.0 atoms $Mo/nm^2$ was prepared as sintered hexagonal and sintered orthorhombic, as well as a novel "well dispersed hexagonal" phase. Characterization by XRD, Raman, and $O_2$ chemisorption results reveals that the dispersion of $MoO_3$ over silica depends on the final $MoO_3$ phase in the order of; sintered hexagonal < sintered orthorhombic < dispersed hexagonal phase. Temperature programmed reduction (TPR) results show that both bulk and dispersed microcrystalline of $MoO_3$ reduce to $MoO_2$ at $650^{\circ}C$ and to Mo metal at $1000^{\circ}C$. HDS of DBT was performed in a differential reactor at 30 atm over the temperature range $350{\sim}500^{\circ}C$. Activity of $MoO_3$/$SiO_2$ toward HDS of DBT is proportional to dispersion.

  • PDF

SiO2 Behavior of MoSi2 Powders Containing SiO2 Synthesized by SHS Method (자전연소합성법으로 제조된 SiO2 첨가된 MoSi2 분말 내에서의 SiO2의 거동 연구)

  • Rha, Sa-Kyun;Jeon, Min-Seok;Song, Jun-Kwang;Han, Dong-Bin;Jeong, Cheol-Weon;Kim, Sung-Soo;Lee, Youn-Seoung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.559-564
    • /
    • 2011
  • In order to investigate the behavior of $SiO_2$ in the molybdenum silicide powders, crystal structure of these powders was measured by XRD, in addition, surface composition and surface phase (or chemical states) and microstructure were analysed by XPS and TEM, respectively. Mo-silicide powders containing $SiO_2$ were synthesized by SHS (Self-Propagating High-Temperature Synthesis) technique. In XRD result, according to increase of $SiO_2$ contents, the crystal structure for synthesized $MoSi_2$ powders was still typical $MoSi_2$ bct without any other phases. By XPS analysis, the surface of Mo and Si source powders was covered with $MoO_3$ and $SiO_2$, respectively, and the surface of synthesized $MoSi_2$ powder was also covered with $MoO_3$ and $SiO_2$, which were stable oxides at room temperature. However, according to increase of $SiO_2$ addition, $MoSi_2$ phase in XPS spectra decreased and $SiO_2$ phase increased relatively in synthesized $MoSi_2$ powders. From the results by XPS and XRD, we found that the existent $SiO_2$ has amorphous structure. In the microstructure, the small particulates of the synthesized products added $SiO_2$ agglomerated together to form larger clusters (from ~10 nm to ~1 ${\mu}m$). From TEM, XPS, and XRD results, we found that the out layer of agglomeration of synthesized $MoSi_2$ powder is surrounded by amorphous $SiO_2$.

Interfacial Moderation and Characterization of Nb/MoSi2 Bonding Materials (Nb/MoSi2 접합재료의 계면 수정 및 특성)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1132-1137
    • /
    • 2003
  • This study dealt with the suppression of interfacial reaction between Nb and MoSi$_2$ for the fabrication of high toughness Nb/MoSi$_2$ laminate composites, based on the results of a thermodynamical estimation. Especially, the effect of ZrO$_2$ particle on the interfacial reaction of Nb/MoSi$_2$ bonding materials has been examined. Nb/MoSi$_2$ bonding materials have been successfully fabricated by alternatively stacking matrix mixtures and Nb sheets and hot pressing in the graphite mould. The addition of ZrO$_2$ particle to MoSi$_2$ matrix is obviously effective for promoting both the interfacial reaction suppression and the sintered density of Nb/MoSi$_2$ bonding materials, since it is caused by the formation of ZrSiO$_4$ in the MoSi$_2$-ZrO$_2$ matrix mixture. The interfacial shear strength of Nb/MoSi$_2$ bonding materials also decreases with the reduction of interfacial reaction layer associated with the content of ZrO$_2$ particle and the fabrication temperature.

Improvement of Impact Properties for $Nb/MoSi_2$ Laminate Composites by the Interfacial Modification (II)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.830-835
    • /
    • 2000
  • The thermodynamical estimation of the interfacial reaction and the impact properties of $Nb/MoSi_2$ laminate composites containing SiC, $NbSi_2$ or $ZrO_2$ particles are investigated. Laminate composites, which comprise alternating layers of $MoSi_2$ with the particle and Nb foil, were fabricated by the hot press process. It is clearly found out that the interfacial reaction of $Nb/MoSi_2$ can be controlled by the addition of $ZrO_2$ particle to the $MoSi_2$ phase. The addition of $ZrO_2$ particle increases both the impact value and the sintered density of Nb/McSij, The suppression of the interfacial reaction is caused by the formation of $ZrSiO_2$ in $MoSi_2-ZrO_2$ matrix mixture.

  • PDF

Electrical characterizations of$Al/TiO_2-SiO_2/Mo$ antifuse ($Al/TiO_2-SiO_2/Mo$ 구조를 가진 Antifuse의 전기적 특성 분석)

  • 홍성훈;노용한;배근학;정동근
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.263-266
    • /
    • 2000
  • This paper is focused on the fabrication of reliable Al/$TiO_2-SiO_2$/Mo antifuse, which could operate at low voltage along with the improvement in on/off state properties. Mo metal as the bottom electrode had smooth surface and high melting point, and was being kept as-deposited $SiO_2$film stable. The breakdown voltage of TiO_2-SiO_2$ stacked antifuse was better than that of same-thickness (100 $\AA$) $SiO_2$antifuse because of Ti diffusion in $SiO_2$. The improving breakdown-voltage and on-resistance can be obtained as well as the influence of hillock in the bottom metal is reduced by using double insulator. Low on-resistance (65 $\Omega$) and low programming voltage (9.0 V) can be obtained in these antifuses with 250 $\AA$ double insulator.

  • PDF

Morphological change of Pt/MoO3/SiO2 for the Synthesis of i-Butylene from n-Butene (N-Butene으로부터 i-Butylene 합성을 위한 Pt/MoO3/SiO2 촉매의 표면 구조 변화)

  • Kim, Jin Gul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.861-868
    • /
    • 1996
  • Skeletal isomerization reaction known as exothermic reaction shows possible maximum yield of i-butene from n-butene at $110^{\circ}C$ over $Pt/MoO_3/SiO_2$. Compared with conventional catalyst such as silica, zeolite, alumina etc., $Pt/MoO_3/SiO_2$ demonstrates higher yield while by-products except 2-butene do not form. Faster H spillover rate over $Pt/MoO_3/SiO_2$ is demonstrated via isothermal reduction experiment at $110^{\circ}C$ compared to the rate over $Pt/MoO_3/Al_2O_3$. Overall isomerization rates are proportional to higher spillover rates from Pt onto $MoO_3$ surface. The skeletal isomerization reaction is composed of two elementary steps. First, carbonium ion formation over Pt crystallites by H spillover. Second, carbenium ion formation over $MoO_3$ followed by formation of i-butene. Moreover, it is suggested that H spillover step from Pt surface onto $MoO_3$ is assumed to be the rate determining step and control the overall isomerization rate.

  • PDF

Fabrication and Impact Properties of $Nb/MoSi_2-ZrO_2$ Laminate Composites ($Nb/MoSi_2-ZrO_2$ 적층복합재료의 제조 및 충격특성)

  • Lee, Sang-Pill;Yoon, Han-Ki;Kong, Yoo-Sik
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.29-34
    • /
    • 2002
  • [ $Nb/MoSi_2-ZrO_2$ ] laminate composites have been successfully fabricated by alternately stacking $MoSi_2-ZrO_2$ powder layer and Nb sheet, followed by hot pressing in a graphite mould. The fabricating parameters were selected as hot press temperatures. The instrumented Charpy impact test was carried out at the room temperature in order to investigate the relationship between impact properties and fabricating temperatures. The interfacial shear strength between $MoSi_2-ZrO_2$ and Nb, which is associated with the fabricating temperature and the growth of interfacial reaction layer, is also discussed. The plastic deformation of Nb sheet and the interfacial delamination were macroscopically observed. The $Nb/MoSi_2-ZrO_2$ laminate composites had the maximum impact value when fabricated at 1623K, accompanying the increase of fracture displacement and crack propagation energy. The interfacial shear strength of $Nb/MoSi_2-ZrO_2$ laminate composites increased with the growth of interfacial reaction layer, which resulted from the increase of fabricating temperature. there is an appropriate interfacial shear strength for the enhancement of impact value of $Nb/MoSi_2-ZrO_2$ laminate composites. A large increase of interfacial shear strength restrains the plastic deformation of Nb sheet.

  • PDF