• Title/Summary/Keyword: MO Sensor (Magneto-Optical Sensor)

Search Result 3, Processing Time 0.019 seconds

Theoretical Consideration of Nondestructive Testing by use of Vertical Magnetization and Magneto-Optical Sensor

  • Lee, Jinyi;Tetsuo Shoji;Dowon Seo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.640-648
    • /
    • 2004
  • This paper describes a new magnetization method for non-destructive testing with magneto-optical sensor (denoted as MO sensor) which have the following characteristic : high observation sensitivity, independence of the crack orientation, and precise imaging of a complex crack geometry such as multiple cracks. When a magnetic field is applied normally to the surface of a specimen which is significantly larger than its defects, approximately the same magnetic charge per unit area occurs on the surface of the specimen. If there is a crack in the specimen, magnetic charge per unit area has the same value at the bottom of the crack. The distribution of the vertical component of the magnetic flux density, B$\_$Z/, is almost uniform over the no-crack area (denoted as B$\_$Z,BASE/), while the magnetic flux density is smaller in the surroundings of the crack(denoted as B$\_$Z,CRACK/) If B$\_$Z, BASE/ is a bit larger than the saturated magnetic flux density of the MO sensor (B$\_$s/) , then small magnetic domains occur over the crack area and a large domain over the non-crack area because B$\_$Z,CRACK/ is smaller than B$\_$s/.

The Detection of Defects in Ferromagnetic Materials Using Magneto-Optical Sensor (자기광학센서를 이용한 강자성체 결함 탐상)

  • Kim, Hoon
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.52-57
    • /
    • 2004
  • A new non-destructive inspection technique has been developed. One characteristic of the technique is that defects are visualized by laser ray. Magnetic domains and domain walls of a magneto-optical sensor(MO sensor) are varied by the magnetic flux leaked by defects, and the variations are observed by the reflected light of the laser ray. The information of defect can remotely be inspected by this technique in a real time. This paper describes the results estimated on the 2-dimensional surface defects and opposite-side defects in a ferromagnetic material and the natural surface defect in a clutch disk wheel. The light region of a visible image and the magnitude of a reflected light increases as the input current of the magnetizer increases. The natural surface defect, that has not the width of crack's open mouth, can be also visualized like as 2-dimensional artificial defects.

  • PDF

Optical Cap Sensor for Magneto-Optic Near-Field Recording (MO 근접장 기록을 위한 광학 갭 센서)

  • Yoon, Yong-Joong;Park, Jae-Hyuk;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.245-250
    • /
    • 2004
  • This paper proposes a new method of measuring an air interface distance between a solid immersion lens(SIL) applied magneto-optic technology and the disk surface. For applying near-field recording (NFR) technology to the magneto-optic storage devices for the next generation, it is positively necessary to maintain the small air gap under about 100㎚. We design an apparatus that consists of some optical components such as a prism, a polarizer and an analyzer. By using the Fresnel reflection coefficient equation, Jones matrices calculation and Malus's law, we establish a mathematical model for understanding the characteristics of the system. The simulations are based on the mathematical model and through the simulation results which is made with various cases we can estimate the performance of the new optical gap sensor system. Experimental results, which are also based on the mathematical model for specific cases, are in good agreement with simulated ones and demonstrate the possibility as the new optical gap sensor.