• 제목/요약/키워드: MMP-2 activation

검색결과 201건 처리시간 0.025초

Nrf2활성화를 통한 삼출건비탕(蔘朮健脾湯)의 간세포보호효과 (Hepatoprotective effect of Samchulgeonbi-tang via Nrf2 Activation)

  • 김예림;진효정;박상미;변성희;송창현;김상찬
    • 대한한의학방제학회지
    • /
    • 제31권2호
    • /
    • pp.111-124
    • /
    • 2023
  • Objectives : Oxidative stress is an important cause of many diseases including liver injury. Therefore, adequate regulation of oxidative stress plays a pivotal role in maintaining liver function. Until recently, there has been no studies on the hepatoprotective effect of Samchulgeonbi-tang (SCGBT). Therefore, the hepatoprotective effect of SCGBT was investigated in HepG2 cells. In this study, oxidative stress was induced by arachidonic acid (AA) and iron. Methods : To analyze the hepatoprotective effects of SCGBT against oxidative stress induced by AA + iron, the cell viability, apoptosis-related proteins and intracellular ROS, glutathione (GSH), and mitochondrial membrane permeability (MMP) were measured. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) transcription activation and expressions of Nrf2 target gene were analyzed through immunoblot analysis. Results : SCGBT increased the cell viability from AA + iron - induced cell death and inhibited apoptosis by regulating apoptosis related proteins. SCGBT protected cells by inhibiting ROS production, GSH depletion, and MMP degradation against AA + iron induced oxidative stress. Furthermore, Nrf2 activation was increased by SCGBT, and the Nrf2 target genes were also activated by SCGBT. Conclusions : These results suggest that the SCGBT has a hepatocyte protection effect and antioxidant effect from AA + iron induced oxidative stress.

TIAM2 Enhances Non-small Cell Lung Cancer Cell Invasion and Motility

  • Zhao, Zheng-Yuan;Han, Chen-Guang;Liu, Jun-Tao;Wang, Chang-Lei;Wang, Yi;Cheng, Li-Ya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6305-6309
    • /
    • 2013
  • Background: TIAM2, a Rac guanine nucleotide exchange factor, is closely associated with cell adherence and migration. Here, we aimed to investigate the role of TIAM2 in non-small cell lung cancer (NSCLC) cells. Materials and Methods: A small interference RNA (siRNA) was introduced to silence the expression of TIAM2. Invasion and motility assays were then performed to assess the invasion and motility potential of NSCLC cells. GST-pull down assays were used to detect activation of Rac1. Results: TIAM2 was highly expressed in NSCLC cells. Knockdown of TIAM2 inhibited the invasion and motility, and suppressed activation of Rac1. Further experiments demonstrated that knockdown of TIAM2 could up-regulate the expression of E-cadherin, and down-regulate the expression of MMP-3, Twist and Snail. Conclusions: Our data suggest that TIAM2 can promote invasion and motility of NSCLC cells. Activation of Rac1 and regulation of some EMT/invasion-related genes may be involved in the underlying processes.

각질형성세포에서 MMP-1 활성 및 자외선 유도 무모쥐 피부손상에 대한 카테킨 고함유 녹차추출물의 영향 (Effects of Catechin-rich Green Tea Extract on the MMP-1 Activity of HaCaT Keratinocyte Cells and on UVB-induced Skin Damage in Hairless Mice)

  • 양원경;박양춘;김복규;최정준;류건식;김승형
    • 한국약용작물학회지
    • /
    • 제27권2호
    • /
    • pp.143-150
    • /
    • 2019
  • Background: Skin is an organ that protects the human body from various environmental stimuli that can induce immune system activation. Skin aging can be largely divided into two categories: physiological aging, which is caused by the a decreased physiological function of the skin and structural changes with aging, and photoaging, which is caused by the chemical stress induced by external stimuli such as ultraviolet (UV) radiation. Methods and Results: The objective of this study was to investigate the anti-wrinkle and UV protective effect of catechin-rich green tea extract (CGTE) in activated keratinocyte (HaCaT cells) and UV-induced skin damage in hairless mice. The results showed that CGTE inhibits the tumor necrosis factor-alpha interferon-gamma ($TNF-{\alpha}+IFN-{\gamma}$)-induced expression of matrix metalloproteinase (MMP)-1 in HaCaT cells. In addition, the CGTE treatment significantly reduced wrinkle formation, epidermal thickness, collagen deposition, and transepidermal water loss in dorsal skin irradiated with UVB. However, the ${\beta}$-glucosidase activity was significantly increased. The CGTE treatment inhibits mRNA expression and enzyme activity of MMP-2 and MMP-9 in the dorsal skin irradiated with UVB. Conclusions: It is expected that CGTE can be effectively used as a functional food and cosmetic ingredient to improve skin moisture retention and reduce wrinkle formation.

In Vitro Evaluation of Anti-cancer Properties of Hongyoung on SNU-80 Anaplastic Thyroid Carcinoma Cell Line

  • Gaeun Kim;Eun-Jung Kim
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.321-329
    • /
    • 2023
  • Anaplastic thyroid cancer has the highest mortality rate of all thyroid cancers and shows low responsiveness to most treatments. Hongyoung, a reddish-colored potato, is an excellent source of dietary polyphenol containing a large amount of anthocyanins, which has anti-cancer and anti-inflammatory effects. This study investigated the effects of Hongyoung extract on apoptosis and invasiveness in SNU-80 anaplastic thyroid cancer cells. The quantification of the total polyphenol content was done by spectrophotometric measurement. Cell growth was measured by using 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl) 2H tetrazolium, monosodium salt (MTS) assay. Cell cycle was analyzed through FACS analysis. Induction of apoptosis in cells was investigated by annexin V staining using flow cytometer and the expression of caspase-3 and Poly (ADP-ribose) polymerase (PARP) through western blot. mRNA expression and protein activation of matrix metalloproteinases (MMP)-2/-9 were examined by RT-PCR and zymography. As a result, the TPC of Hongyoung was 292.43±8.42 mg gallic acid equivalent (GAE)/100 g dry extract. Hongyoung showed a dose-dependent cell growth inhibition, and the IC50 values was 1,000 ㎍/mL. sub-G1 phase was more than doubled compared to the control group, and S and G2/M phase arrest were also induced. Hongyoung induced apoptosis by increasing FITC-Annexin V-positive cells and increased the activation of caspase-3 (cleaved caspase-3) and PARP (fragmented PARP). Hongyoung significantly inhibited mRNA expression and protein activation of MMP-2/-9 in phorbol 12-myristate 13-acetate (PMA)-treated SNU-80 cells. Therefore, this study suggests the possibility of development of Hongyoung extract as an anti-cancer agent.

Effects of the Fraction of Sambucus Williamsii, NNMBS 246, on Osteoblastic Differentiation

  • Kang, Soon-Il;Park, Jaesuh;Kwon, Il-Keun;Kim, Eun-Cheol
    • 셀메드
    • /
    • 제8권3호
    • /
    • pp.13.1-13.8
    • /
    • 2018
  • In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone formation. The purpose of this study was to examine the effects of NNMBS 246 osteoblastic differentiation with associated signaling pathways. NNMBS 246 markedly increased alkaline phosphatase (ALP) activity and calcium nodule formation. Stimulation with NNMBS 246 not only increased the differentiation markers (ALP, OPN, OCN) level and transcription markers (RUNX2, Osterix) mRNA expression but also upregulated the ECM molecules and OPG mRNA expression. Treatments of NNMBS 246 downregulated MMPs (MMP-1, MMP-2, MMP-9), but RANKL mRNA expression. Furthermore, NNMBS 246 activated osteoblastic differentiation markers and formed calcium nodules in human periodontal ligament cells (hPDLCs) and cementoblast cells. NNMBS 246 induced phosphorylation of MAPKs, Akt, nuclear p65 and IkB-${\alpha}$. BMP-2/Smad and ${\beta}$-catenin signaling pathways were activated by NNMBS 246. Sirtinol (SIRT1 inhibitor) inhibited NNMBS 246-induced osteoblastic differentiation markers mRNA expression. These results suggested that NNMBS 246 has the potential to enhance osteoblastogenesis probably through the activation of BMP/Smad and ${\beta}$-catenin signal pathways, and SIRT1 plays as critical mediator in bone anabolic effect of NNMBS 246.

NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions

  • Ilgin Akkaya;Ece Oylumlu;Irem Ozel;Goksu Uzel;Lubeyne Durmus;Ceren Ciraci
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.42.1-42.20
    • /
    • 2021
  • Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.

Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling

  • Canmin Zhu;Dili Wang;Chang Chang;Aofei Liu;Ji Zhou;Ting Yang;Yuanfeng Jiang;Xia Li;Weijian Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권3호
    • /
    • pp.239-252
    • /
    • 2024
  • Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 ㎍/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 ㎍/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.

Matrix Metalloproteinases, New Insights into the Understanding of Neurodegenerative Disorders

  • Kim, Yoon-Seong;Joh, Tong-H.
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.133-143
    • /
    • 2012
  • Matrix metalloproteinases (MMPs) are a subfamily of zinc-dependent proteases that are re-sponsible for degradation and remodeling of extracellular matrix proteins. The activity of MMPs is tightly regulated at several levels including cleavage of prodomain, allosteric activation, com-partmentalization and complex formation with tissue inhibitor of metalloproteinases (TIMPs). In the central nervous system (CNS), MMPs play a wide variety of roles ranging from brain devel-opment, synaptic plasticity and repair after injury to the pathogenesis of various brain disorders. Following general discussion on the domain structure and the regulation of activity of MMPs, we emphasize their implication in various brain disorder conditions such as Alzheimer's disease, multiple sclerosis, ischemia/reperfusion and Parkinson's disease. We further highlight accumu-lating evidence that MMPs might be the culprit in Parkinson's disease (PD). Among them, MMP-3 appears to be involved in a range of pathogenesis processes in PD including neuroinflamma-tion, apoptosis and degradation of ${\alpha}$-synuclein and DJ-1. MMP inhibitors could represent poten-tial novel therapeutic strategies for treatments of neurodegenerative diseases.

혈부축어탕이 파골세포 분화 및 골흡수에 미치는 영향 (Effects of Hyeolbuchugeo-tang on Osteoclast Differentiation and Bone Resorption)

  • 장새별;유동열;유정은
    • 대한한방부인과학회지
    • /
    • 제30권4호
    • /
    • pp.1-17
    • /
    • 2017
  • Objectives: This study was conducted to evaluate the effects of Hyeolbuchugeo-tang (HBC) on Osteoporosis. Methods: We induced RAW 264.7 cells to differentiate to Osteoclasts by RANKL and treated RANKL-induced RAW 264.7 cells with HBC (0, 150, 350, $700{\mu}g/ml$). To measure osteoclast differentiation and activation, we counted TRAP (+) MNCs and measured mRNA expressions of its related genes (TRAP, MMP-9, cathepsin K, NFATc1, c-Fos, MITF, iNOS, COX-2, TNF-${\alpha}$) by RT-PCR. To assess bone resorption, the Bone pit formation were examined under a microscope. Results: HBC decreased TRAP (+) MNCs and inhibited mRNA expressions of TRAP, MMP-9, cathepsin K, NFATc1, c-Fos, MITF in osteoclast. And HBC inhibited Bone pit formation. Conclusions: HBC inhibited osteoclast differentiation and activation and bone resorption. Taken together, these results indicate that HBC might have potentials for prevention and treatment of Osteoporosis.

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.