• Title/Summary/Keyword: MMEC

Search Result 2, Processing Time 0.016 seconds

Yoke Shape Design of Claw-Poles Stepping Motor Using Modified Magnetic Equivalent Circuit Method Including Magnetic Saturation Effect and Leakage Flux (자기 포화와 누설자속이 고려된 자기등가회로법을 이용한 클로우 폴 스테핑 모터의 요크 형상 설계)

  • Lee, Hyung-Woo;Cho, Su-Yeon;Bae, Jae-Nam;Son, Byoung-Ook;Park, Kyoung-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1942-1946
    • /
    • 2009
  • This paper presents a shape design process of Claw-Poles Stepping Motor(CPSM) using Modified Magnetic Equivalent Circuit Method(MMEC). Because this motor is adopted on low power devices, the motor size is a very small type. But it have a very strong permanent magnet. So magnetic saturation effect happens on yoke teeth of CPSM. Also this magnetic saturation effect causes more leakage flux component between yoke tooth have another pole. In this motor type, it is essential to design a shape of yoke teeth for avoiding the magnetic saturation effect and the leakage flux. In this paper, MMEC including the magnetic saturation effect and the leakage flux component was used for design process. Comparing with data calculated by using the MMEC and results analyzed by 3-D FEM, it could be stated that the design process with MMEC was reasonable. Finally, the model has the optimized shape of yoke teeth was compared with a conventional model for no-load Back EMF and torque at steady-state operation.

Design of Cascode HBT-MMIC Amplifier with High Cain and Low Noise Figure (고이득, 저잡음지수를 갖는 캐스코드 HBT-MMIC 증폭기 설계)

  • Rhee Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.647-653
    • /
    • 2005
  • According to the design concept of microwave front-end, a low noise amplifier block using HBT cascode topology is proposed to provide high gain and low noise figure with low bias current. We has implemented MMIC-LNA with a modified configuration using inductors to show low noise at the emitter and base of cascoded HBT-MMIC amplifier. The measured performance of the designed MMIC-LNA at 3.7GHz are a gain of 19dB, noise figure of 2.7dB and image rejection of 35dBc using a supply of 3mA and 2.7V. We can convinced that cascoded amplifier block to fulfill a high gain, low noise and image rejection if microwave front-end receiver is designed by cascode MMEC-LNA with the active image rejection filter.