• Title/Summary/Keyword: MMCs

Search Result 99, Processing Time 0.023 seconds

A Simple Capacitor Voltage Balancing Method with a Fundamental Sorting Frequency for Modular Multilevel Converters

  • Peng, Hao;Wang, Ying;Wang, Kun;Deng, Yan;He, Xiangning;Zhao, Rongxiang
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1109-1118
    • /
    • 2014
  • A Fundamental Frequency Sorting Algorithm (FFSA) is proposed in this paper to balance the voltages of floating dc capacitors for Modular Multilevel Converters (MMCs). The main idea is to change the sequences of the CPS-PWM carriers according to the capacitor voltage increments during the previous fundamental period. Excessive frequent sorting is avoided and many calculating resources are saved for the controller. As a result, more sub-modules can be dealt with. Furthermore, it does not need to measure the arm currents. Therefore, the communication between the controllers can be simplified and the number of current sensors can be reduced. Moreover, the proposed balancing method guarantees that all of the switching frequencies of the sub-modules are equal to each other. This is quite beneficial for the thermal design of the sub-modules and the lifetime of the power switches. Simulation and experimental results acquired from a 9-level prototype verify the viability of the proposed balancing method.

Quasi-Fixed-Frequency Hysteresis Current Tracking Control Strategy for Modular Multilevel Converters

  • Mei, Jun;Ji, Yu;Du, Xiaozhou;Ma, Tian;Huang, Can;Hu, Qinran
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1147-1156
    • /
    • 2014
  • This study proposes a quasi-fixed-frequency hysteresis current tracking control strategy for modular multilevel converters (MMCs) on the basis of voltage partition principle. First, by monitoring the grid voltage and the deviation between the output and reference currents, the output voltage is determined, thus prompting the output current to quickly and efficiently track the given current. Second, the voltages of the upper/lower capacitor of the arm and the voltages between the upper and lower arms are balanced by combining these arms with virtual loop mapping and arm voltage balance control, respectively. In particular, the proposed method is designed for any level and number of sub-modules. The validity of the proposed method is verified by simulations and experimental results of a five-level MMC prototype.

Control Scheme Using Active Power Regulation for DC Voltage of VSC HVDC Under Unbalanced Voltage (불평형 전압 발생 시 유효전력 조절을 통한 전압형 HVDC의 DC전압 제어 방안)

  • Park, Sang-In;Huh, Jae-Sun;Moon, Won-Sik;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.232-239
    • /
    • 2015
  • Faced with unbalanced grid operation mode, the high voltage direct current (HVDC) based on voltage source converter (VSC) can be properly controlled by a dual current control scheme. For the modular multilevel converter (MMC) controlling the AC side current is able to limit the arm current which flows along the IGBT of submodule (SM) to rated current. However the limitation of the arm current results in leaving the control range of active power at MMC confined to below the rated capacity. As a result, limiting the arm current causes the problem that the DC side voltage of the HVDC can not be controlled to the reference value since MMC HVDC adjusts the DC side voltage through the active power. In this paper, we propose the algorithm adjusting the active powers of both MMCs to resolve the problem. The back-to-back MMC HVDC applying the algorithm is modeled by PSCAD/EMTDC to verify the algorithm.

A Hardware-in-the-loop Platform for Modular Multilevel Converter Simulations

  • Liu, Chongru;Tian, Pengfei;Wang, Yu;Guo, Qi;Lin, Xuehua;Wang, Jiayu
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1698-1705
    • /
    • 2016
  • In this paper, a hardware-in-the-loop simulation platform for MMCs is established, which connects a real time digital simulator (RTDS) and a designed MMC controller with optical fiber. In this platform, the converter valves are simulated with a small time step of 2.5 microsecond in the RTDS, and multicore technology is implemented for the controller so that the parallel valve control is distributed between different cores. Therefore, the designed controller can satisfy the requirements of real-time control. The functions of the designed platform and the rationality for the designed controller are verified through experimental tests. The results show that different modulation modes and various control strategies can be implemented in the simulation platform and that each control objective can been tracked accurately and with a fast dynamic response.

A Study on the Microstructures and Properties of $Al-SiC)_p$ Metal Matrix Composites Fabricated by Spray Forming Process (분무성형법에 의해 제조된 $Al-SiC)_p$ 금속기 복합재료의 미세조직과 성질에 관한 연구)

  • 김춘근
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • 6061Al-SiCP metal matrix composite materials(MMCs) were fabricated by injecting SiCP particles directly into the atomized spray. The main attraction of this technique is the rapid fabrication of semi-finished, composite products in a combined atomization, particulate injection(10 $\mu\textrm{m}$, 40 $\mu\textrm{m}$, SiCP) and deposition operation. Conclusions obtained are as follows; The microstructure of the unreinforced spray formed 6061Al alloy consisted of relatively fine(50 $\mu\textrm{m}$) equiaxed grains. By comparision, the microstructure of the I/M materials was segregated and consisted of relatively coarse(150 $\mu\textrm{m}$) grains. The probability of clustering of SiCP particles in co-sprayed metal matrix composites increased it ceramic particle size(SiCP) was reduced and the volume fraction was held constant. Analysis of overspray powders collected from the spray atomization and deposition experiments indicated that morphology of powders were nearly spherical and degree of powders sphercity was deviated due to composite with SiCp particles. Interfacial bonding between matrix and ceramics was improved by heat treatment and addition of alloying elements(Mg). Maximum hardness values [Hv: 165 kg/mm2 for Al-10 $\mu\textrm{m}$ SiCp Hv--159 kg/mm2 for Al-40 $\mu\textrm{m}$SiCp] were obtained through the solution heat treatment at $530^{\circ}C$ for 2 hrs and aging at $178^{\circ}C$, and there by the resistance were improved.

  • PDF

Evaluation of Thermal Shock Damage of Metal Matrix Composite Using Ultasonics (초음파를 이용한 금속기지 복합재료의 열충격 손상 평가)

  • Kang, Moon-Phil;Lee, Min-Rae;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1480-1487
    • /
    • 2005
  • Metal matrix composites(MMCs) have been rapidly becoming one of the strongest candidates for structural materials fur many high temperature application. However, among the various high temperature environments in which metal matrix composites was applied, thermal shock is known to cause significant degradation in most MMC system. Due to the appreciable difference in coefficient of thermal expansion(CTE) between reinforcement and metal matrix, internal stresses are generated following temperature changes. Infernal stresses affect degradation of mechanical properties of MMC by causing microscopic damage in interface and matrix during thermal cycling. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonics. For this study, SiC fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 298$\~$673 K up to 1000cyc1es. Three point bending test was conducted to investigate the efffct of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the propagation characteristics of surface wave and SH-ultrasonic wave was discussed by considering the result of SEM observation of fracture surface.

High Temperature Thermo-mechanical Properties of HfC Reinforced Tungsten Matrix Composites

  • Umer, Malik Adeel;Lee, Dong Ju;Ryu, Ho Jin;Hong, Soon Hyung
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.366-371
    • /
    • 2015
  • In order to improve the mechanical properties of tungsten at room and elevated temperature, hafnium carbide (HfC) reinforced tungsten matrix composites were prepared using the spark plasma sintering technique. The effect of HfC content on the compressive strength and flexural strength of the tungsten composites was investigated. Mechanical properties of the composites were also measured at elevated temperatures and their trends, with varying reinforcement volume fraction, were studied. The effect of reinforcement fraction on the thermal properties of the composites was investigated. The thermal conductivity and diffusivity of the composites decreased with increasing temperature and reinforcement volume fraction. An inherently low thermal conductivity of the reinforcement as well as interfacial losses was responsible for lower values of thermal conductivity of the composites. Values of coefficient of thermal expansion of the composites were observed to increase with HfC volume fraction.

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E.
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.75-87
    • /
    • 2008
  • Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

Compositing Modes and Microstructures of $Cu-X(=Al_2O_3,W)_p$ Composite by Centrifugal Spray-Cast Deposition (원심분사주조법에 의한 $Cu-X(=Al_2O_3,W)_p$ 복합재료의 미세조직 및 복합화)

  • Bae, Cha-Hurn;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.480-487
    • /
    • 1997
  • Particle reinforced metal matrix composites(MMCs) via a centrifugal spray-cast deposition(CSD) process were fabricated by injecting second phase particles($Al_2O_3$<40${\mu}m$, W<17.3${\mu}m$) into copper melt on the atomizing disc. Compositing modes were investigated by combining microstructures and mathematical modeling between Cu droplets and the reinforced particles injected. The $Cu/W_P$ powders were shown that the W particles penetrate and get embedded in the Cu droplets. It is considered that the W particles composite preferentially in Cu melt on the atomizing disc. On the other hand, the $Al_2O_3$, particles did not penetrate into the Cu droplets on the atomizing disc but get attached in surface of Cu droplets during the flight. It is considered that the compositing may be attained in the flight distance which the relative velocity between Cu droplet and $Al_2O_3$, particle is maximum. The microstructure of the $Cu/W_P$ and the $Cu/(Al_2O_3)_p$ composite preform was strongly influenced by compositing modes of droplets, and after subsequent deposition it was comprised as it is called the dispersed type and the cell type of microstructure, respectively.

  • PDF