• Title/Summary/Keyword: MMCs

Search Result 99, Processing Time 0.022 seconds

Estimation of Mechanical Properties of Tungsten-Fiber-Reinforced Ti-MMCs by Hot Isostatic Pressing (HIP 처리 티타늄기 MMC 의 기계적 특성평가)

  • Son, Sun-Young;Nishida, Shin-Ichi;Lee, Jong-Hyung;Kim, Young-Tae;Lee, Do-Kyung;Son, Yong-Jea;Jang, Hyun-Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.407-412
    • /
    • 2010
  • The objective of this study is the estimation of the mechanical properties of HIP-treated MMCs by an optimized manufacturing process. The Ti-MMCs were fabricated by HIP and rotary swaging (RS) for secondary processing. The Ti-MMCs with different tungsten fiber contents of 0, 6, 9, and 12 vol% were subjected to tensile tests, fatigue tests, and hardness tests. The results show that the hardness values of Ti-MMCs increased with the increasing volume percent of tungsten fibers, the tensile strength increased by approximately 50% (specific strength: 38%) at the 9 vol%. The value of tungsten-fiber orientation F affects the tensile strength. The fatigue strengths of the Ti-MMCs did not improve. HIP is a useful manufacturing method for Ti-MMCs and RS is an important process for improving fiber orientation during secondary processing.

Fabrication of Fiber/Particle Hybrid MMCs and Analysis of the Mechanical Properties (섬유/입자 혼합 금속복합재료의 제조 및 특성평가)

  • 정성욱;남현욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.34-37
    • /
    • 2001
  • This study developed Fiber/Particle Hybrid MMCs and analyzed their mechanical properties. Using $\textrm{Al}_2\textrm{O}_3f$ and $\textrm{Al}_2\textrm{O}_3p$ with the fiber to particle ratio of 1:1, 1:3, 1:5 hybrid preform and MMCs are fabricated. For the analysis of the mechanical properties, three point bending tests were preformed for the preform and tensile test for the MMCs. The experimental results show that the hybrid MMCs can be successfully fabricated using the equipment of fiber preform fabrication system and squeeze casting method. And as the amount of particle in hybrid MMCs increases, the tensile strength, elastic modulus and the volume fraction of reinforcement increases.

  • PDF

Effects of Reinforcements Type on Mechanical Properties of Metal Matrix Composites (보강재의 형태와 종류가 금속복합재료의 기계적 물성에 미치는 영향 연구)

  • 남현욱;조종인;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.79-82
    • /
    • 2001
  • In this research, tile effects of reinforcements type on mechanical properties of MMCs were studied. Six kinds preform were fabricated by using Saffil short fiber, HTZ short fiber, $Al_2O_3$ particle, and SiC particle. MMCs were fabricated by using squeeze casting methods. Various tests were conducted to show the effects of reinforcements type on mechanical properties of MMCs. Tensile and compressive properties of MMCs depend on short fiber, however wear properties depend on particle reinforcement. Generally, properties of fiber/particle hybrid MMCs were excellent than those of MMCs with short fiber.

  • PDF

Histopathological studies on melano - macrophage centers (MMCs) in spleen and head kidney of immuno - modified tilapia, Oreochromis niloticus (틸라피아(Oreochromis niloticus)의 면역활성변화와 Melano - Macrophage Centers (MMCs)의 행동특성에 관한 병리조직학적 연구)

  • Park, Jeong-Hee;Huh, Min-Do
    • Journal of fish pathology
    • /
    • v.7 no.2
    • /
    • pp.127-149
    • /
    • 1994
  • Histopathological studies on the two lymphomyeloid organs of spleen and head kidney in tilapia, Oreochromis niloticus, were carried out to clarify the significance on the morphological characteristics of melano - macrophage centers (MMCs) which are varied in different physiological and pathological conditions of teleosts. To examine the histological changes by the artificial modification of the immunological states, tilapia were treated intraperitoneally with FKC and LPS of Edwardsiella tarda, and orally with dexamethasone, and then followed by the intraperitoneal injection of colloidal carbon for chasing the macrophages. There were marked differences in phagocytic avidity of macrophages, and accumulating patterns of carbon - ladening macrophages into the MMCs among the test groups. In the non - pretreated control group, carbon - ladening macrophages were densely accumulated at 12th and 20th day within the MMCs of head kidney and spleen, respectively. And, in the groups treated with bacterial antigens (FKC & LPS), the macrophages were more rapidly and densely aggregated within MMCs. But in the group with dexamethasone, only a few carbon particles were detected in both organs. Any compactly isolated form of particles was not found in this group. From the present results, it was strongly suggested that certain changes in immunological states of tilapia influence on the morphology of MMCs including the frequency of appearance, sizes, aggregating patterns or outlines. Therefore, morphology of MMCs would be very important in the interpretation for histopathological findings seen in the teleost's lymphomyeloid organs.

  • PDF

Effects of Fiber Orientations and Hybrid Ratios on Lubricant Tribological Characteristics of $Al_2O_{3f}/SiC_p$ Reinforced MMCs ($Al_2O_{3f}/SiC_p$ 금속복합재료의 섬유방향과 혼합비가 윤활마모특성에 미치는 영향)

  • Wang, Yi-Qi;Song, Jung-Il
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.15-23
    • /
    • 2009
  • The lubricant tribological characteristics of $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) fabricated by squeeze casting method was investigated using a pin-on-disk wear tester. The wear tests of the MMCs were performed according to fiber/particle hybrid ratio in the planar-random (PR) and normal (N) orientations sliding against a counter steel disk at a fixed speed and $25\;kg_f$ loading under different sliding distances and temperatures. The test results showed that the wear behavior of MMCs varied with fiber orientation and hybrid ratio. At room temperature, the lubricant wear behavior of F20P0 unhybrid PR-MMCs was superior to that of N-MMCs while the hybrid composites exhibited the reverse lubricant wear behavior. It was also revealed that the wear resistance of PR-MMCs was superior to that of the N-MMCs due to the joint action of reinforcements and lubricant film between the friction surfaces at an elevated temperature of $100^{\circ}C$ for both fiber only and hybrid cases. In case of $150^{\circ}C$, although the trend of weight loss was similar to that of others, the wear resistance of PR-MMCs was better than that of N-MMCs for hybrid MMCs.

Selective Laser Melting of Metal Matrix Composites: A Review of Materials and Process Design (레이저로 적층 제조한 금속 기지재 복합재료의 설계 및 제조 연구동향)

  • Kim, Min-Kyeom;Kim, Taehwan;Kim, Ju-won;Kim, Dongwon;Fang, Yongjian;No, Jonghwan;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.212-225
    • /
    • 2021
  • Metal matrix composites (MMCs) were widely used in various industries, due to the excellent properties: high strength, stiffness, wear resistance, hardness, thermal conductivity, electrical conductivity, etc. With additive manufacturing (AM) technology rapidly developed, AM MMCs have been actively investigated thanks to the cost- and time-saving manufacturing. However, several issues still need to be addressed before fabricating AM MMCs. Here, several types of MMCs were introduced and MMCs' design methods to tackle the issues were suggested in a powder bed fusion (PBF) technique. The paper could come up with a guideline for the material and process design of MMCs in the PBF technique.

Strengthening Mechanism of Hybrid Short Fiber/Particle Reinforced Metal Matrix Composites (섬유/입자 혼합 금속복합재료의 강화기구 해석)

  • 정성욱;이종해;정창규;송정일;한경섭
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.50-60
    • /
    • 2000
  • This paper presents an analytical method considering tensile strength enhancement in hybrid $Al_2O_3$ fiber/particle/aluminum composites(MMCs). The tensile strength and elastic modulus of the hybrid MMCs are even 20% higher than those of the fiber reinforced MMCs with same volume fraction of reinforcements. This phenomenon is explained by the cluster model which is newly proposed in this research, and the strengthening mechanisms by a cluster is analyzed using simple modified rule of mixtures. From the analysis, it is observed that cluster structure in hybrid MMCs increase the fiber efficiency factor for the tensile strength and the orientation factor for the elastic modulus. The present theory is then compared with experimental results which was performed using squeeze infiltrated hybrid MMCs made of hybrid $Al_2O_3$ short fiber/particle preform and AC8A alloy as base metal, and the agreement is found to be satisfactory.

  • PDF

Tensile Behavior of Fiber/Particle Hybrid Metal Matrix Composites (섬유/입자 혼합금속복합재료의 인장거동)

  • 정성욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.139-142
    • /
    • 2002
  • This study presents a mathematical model predicting the stress-strain behavior of fiber reinforced (FMMCs) and fiber/particle reinforced metal matrix composites (F/P MMCs). MMCs were fabricated by squeeze casting method using Al2O3 short fiber and particle as reinforcement, and A356 aluminum alloy as matrix. The fiber/particle ratios of F/P MMCs were 2:1, 1:1, 1:2 with the total reinforcement volume fraction of 20 vol.%, and the FMMCs were reinforced with 10 vol,%, 15 vol. %, 20 vol. % of fibers. Tensile tests were conducted and compared with predictions which were derived using laminate analogy theory and multi-failure model of reinforcements. Results show that the tensile strength of FMMCs with 10 vol.% of fiber was well matched with prediction, and as the fiber volume increases, predictions become larger than experimental results. The difference between the prediction and experiment is considered to be a result of matrix allowance of fiber damage in tensile loading. As the fiber volume fraction in FMMCs increases, the fiber damage increases and so that the tensile strength is reduced. The strength of F/P MMCs approaches more closely to the prediction than FMMCs reinforced with 20 vol.% of fibers because F/P MMCs contains small quantity of fibers and thus has a positive effect in fiber strengthening.

  • PDF

Abrasive Wear of Hybrid Metal Matrix Composites for High Wear Resistance (고 내마모성 혼합 금속복합재료의 연삭마모)

  • 송정일
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.12-22
    • /
    • 1999
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study wear behavior of $Al/Al_2O_3/C$ hybrid MMCs fabricated by squeeze infiltration method was characterized by the abrasive wear test under various sliding speeds at room and high temperature. Wear resistance of MMCs was improved due to the presence of reinforcements at high sliding speed. Especially wear resistance of carbon hybrid MMCs was superior to other materials because of its solid lubrication of carbon. The friction coefficient of MMCs was not affected by the sliding speed.

  • PDF

Numerical Analysis of Infiltration and Heat Transfer of Squeeze Casting for MMCs (용탕주조법을 이용한 금속복합재료의 침투와 열전달 해석)

  • 안인혁;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.195-198
    • /
    • 2000
  • The process of squeeze casting for metal matrix composites (MMCs) has been simulated numerically by using finite difference method. The governing equations to describe fluid flow through porous medium and heat transfer are applied to two dimensional model which is similar to a real system. A computational code has been developed to solve this problem. The influence on infiltration kinetics and solidification time of several parameters is investigated. Cooling curves and temperature distribution with time and position is also shown. The result can be used to design the squeeze casting for MMCs.

  • PDF