• Title/Summary/Keyword: MM5 model simulation

Search Result 229, Processing Time 0.055 seconds

A Study on Scenario-based Urban Flood Prediction using G2D Flood Analysis Model (G2D 침수해석 모형을 이용한 시나리오 기반 도시 침수예측 연구)

  • Hui-Seong Noh;Ki-Hong Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.488-494
    • /
    • 2023
  • In this paper, scenario-based urban flood prediction for the entire Jinju city was performed, and a simulation domain was constructed using G2D as a 2-dimensional urban flood analysis model. The domain configuration is DEM, and the land cover map is used to set the roughness coefficient for each grid. The input data of the model are water level, water depth and flow rate. In the simulation of the built G2D model, virtual rainfall (3 mm/10 min rainfall given to all grids for 5 hours) and virtual flow were applied. And, a GPU acceleration technique was applied to determine whether to run the flood analysis model in the target area. As a result of the simulation, it was confirmed that the high-resolution flood analysis time was significantly shortened and the flood depth for visual flood judgment could be created for each simulation time.

Coverage Evaluation of mmWave Small Cell in Outdoor Environment (실외환경에서 밀리미터파 소형 셀의 커버리지 측정)

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.162-165
    • /
    • 2017
  • In an effort to compensate the rising of the data throughput demand nowadays, there have been many research works to optimize the radio resource and increase the capacity of the network. At the present, small cell network, mmWave band and beamforming technology are leading the trend and becoming the core solutions of the fifth generation (5G) cellular networks. Since the propagation characteristics of radio wave in the mmWave band is quite different from the conventional bands, the communication systems which work in these bands have to be redesigned. In this paper, a 3D simulation model is discussed for cellular network at 60 GHz in outdoor environments. Coverage analysis and system performance is carried out for a small cell system in the typical urban environment including street canyon simulation scenario. In addition, the beamforming technique is considered to evaluate the throughput improvement. Simulation results show that the mmWave small cell systems is expected to be one of the major candidate technologies to satisfy the requirements of 5G in terms of data rate.

Simulation of sediment reduction effects of VFS in uplands of Saemangeum watershed (새만금유역 밭경지 초생대 유사저감효과 모의)

  • Lee, Seul Gi;Jang, Jeong Ryeol;Choi, Kyung Sook
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.535-542
    • /
    • 2018
  • The study was intended to simulate the sediment reduction effects of the Vegetative Filter Strip (VFS) in uplands of Saemangeum watershed through VFSMOD-W model application. The model was calibrated by using the field data and the simulation scenarios were designed based on the investigation of uplands characteristics in Saemangeum watershed. The simulation scenarios were considered various size and slope of uplands including 1 ha, 5 ha, 10 ha of field size with width-length ratio of 1 : 1 having 7% and 15% of slopes under the daily rainfall of 50 mm, 100 mm, 150 mm, and 200 mm in order to mimic the different fields conditions. The effluent reduction ranged from 2.9~13.5% and 2.9~12.1% for runoff, and 33.8~97.0% and 27.1~85.9% for sediment under the field's slope of 7% and 15%, respectively. The VFS reduction effects showed different degree of influence from field size, slope, rainfall amounts. Based on the simulated results, the sediment contributing non-point source pollution expected to be reduced in the condition of VFS constructed 10% of fields in outlet of less than 10 ha of uplands having less than 15% of the slope.

A Phantom study of Displacement of Three Dimensional Volume Rendering for Clinical Application in Radiation Treatment Planning (방사선치료계획의 임상적용을 위한 3차원 볼륨렌더링영상 체적변화의 모형연구)

  • Goo, Eun-Hoe;Lee, Jae-Seung;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.280-288
    • /
    • 2009
  • This study is to design and produce a detailed model for volume variety of three dimensional reconstruction images and to evaluate the changes of volume, area and the length of the model in the process of the reconstruction of RTP system. CT simulation was operated at the thickness of 1.25, 2.5, 5, 10mm and average, standard deviation of scan direction(X), thickness(Y), table movement direction(Z), area(A), and volume(V) of the three dimensional volume rendering, were measured according to the shape and thickness of the phantoms. As a result, at the thickness of 1.25, 2.5min, the phantom's shape decreased maximum 0.13cm(p<0.05) to the direction of X, Y, Z and length, area, volume decreased 0.1cm, $0.8cm^2$, $3.99cm^3$ which led to an approximate image of the phantoms. However, at the thickness of 5, 10mm, the phantom of the original form decreased maximum 0.58cm(p<0.05) and volume, area, length decreased maximum 0.45cm, $8.21cm^2$, $11.03cm^3$. Volume varieties according to the thickness and shape of the phantoms have occurred diversely, when CT simulation was operated, and it is considered that a clinically appropriate volume rendering can be obtained only when the thickness is below 3mm.

Analysis of Livestock Nonpoint Source Pollutant Load Ratio for Each Sub-watershed in Sancheong Watershed using HSPF Model (HSPF 모형을 이용한 산청 유역의 소유역별 축산비점오염부하량 비중 분석)

  • Kim, So Rae;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.

Applicability of the DAWAST Model Considered Return flows (용수 수요를 고려한 DAWAST 모형의 적용성 평가)

  • Noh, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1097-1107
    • /
    • 2003
  • The DAWAST model was originally developed to consider the variation of water storage in the unsaturated soil zone and it is a conceptual lumped model. Return flows from agricultural, domestic and industrial water were included to the original result of model simulation to calibrate model parameters of watershed runoff. Agricultural water demand was estimated only in paddy fields supposing that return flow responded at stream was originated from paddy fields. Domestic and industrial water demand was estimated by average daily water demand multiplied monthly variation coefficient. Daily inflow to the Daechung multipurpose dam was applied to verify the DAWAST model considered return flows. On annual average from 1983 to 2001, inflows were simulated to 652.5 mm with return flows considered, which was approached more closer to observed inflow of 667.3 mm, compared with case of 606.8 mm with return flows not considered.

A Scalp-Implantable Antenna for Wireless Biotelemetry (무선 Biotelemetry용 인체 이식형 안테나)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.112-115
    • /
    • 2016
  • This paper demonstrates a scalp-implantable miniaturized antenna at the medical implant communication service (MICS) (402-405MHz) band. The antenna size is only $27.63mm^3$($8.5mm{\times}6.5mm{\times}0.5mm$), which is the smallest antenna for the MICS band. Miniaturization is achieved by using a symmetrical serpentine shaped radiating patch and placing open-end slots in the ground plane. In addition, co-axial feeding is used for excitation with a shorting pin connected between the radiator and ground. The antenna was simulated in a homogeneous skin model and in the human scalp. An experimental prototype of the proposed antenna was fabricated and measured in a skin-mimicking gel. Good agreement was obtained between the measurement and simulation results, showing a broad bandwidth of 49 MHz (from 395 to 444 MHz) for |S11| less than -10 dB and a maximum gain of -42.87 dBi. This gain is higher than the previous MICS antenna with respect to antenna size.

Improvements in the simulation of sea surface wind over the complex coastal area- I : Assessment of current operational model (복잡 해안지역 해상풍 모의의 정확도 개선- I : 현업모델의 평가)

  • Bae Joo-Hyun;Kim Yoo-Keun;Oh In-Bo;Jeong Ju-Hee;Kweon Ji-Hye;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.657-667
    • /
    • 2005
  • In this study, we focused on the improvements in the simulation of sea surface wind over the complex coastal area. MM5 model being currently used to predict sea surface wind at Korea Meteorological Administration, was used to verify the accuracy to estimate the local wind field. A case study was performed on clear days with weak wind speed(4 m/s), chosen by the analysis of observations. The model simulations were conducted in the southeastern area of Korea during the selected periods, and observational data such as AWS, buoy and QuikSCAT were used to compare with the calculated wind components to investigate if simulated wind field could follow the tendency of the real atmospheric wind field. Results showed that current operational model, MM5, does not estimate accurately sea surface wind and the wind over the coastal area. The calculated wind speed was overestimated along the complex coastal regions but it was underestimated in islands and over the sea. The calculated diurnal changes of wind direction could not follow well the tendency of the observed wind, especially at nighttime. In order to exceed the limitations, data assimilation with high resolution data and more specificated geographical information is expected as a next best policy to estimate accurately the environment of local marine wind field.

Comparison of Hourly and Daily SWAT Results for the Evaluation of Runoff Simulation Performance (SWAT모형의 시단위 및 일단위 유출 모의성능 비교)

  • Jang, Sun Sook;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.59-69
    • /
    • 2016
  • This study aims to evaluate the Soil and Water Assessment Tool (SWAT) hourly hydrological modeling performance and compare it with daily SWAT modeling parameters. For the Byeolmicheon catchment ($1.17km^2$) located in the upstream of Gyeongancheon watershed and total 18 storm events measured during 3 years (2011-2013), the hourly SWAT was calibrated and validated using the Green and Ampt (G&A) infiltration equation. The determination coefficient ($R^2$) and Nash-Sutcliffe model efficiency (NSE) of hourly SWAT discharge were 0.81 and 0.73 respectively, and the most sensitive parameter was soil saturated hydraulic conductivity (SOL_K) and calibrated with the average value of 0.075 mm/hr. In addition, the hourly SWAT simulation by G&A was compared with the daily SWAT simulation by SCS-CN (Soil Conservation Service-Curve Number) method for the whole 3 years period. The houlrly G&A results showed $R^2$ and NSE of 0.71 and 0.50, and the daily SCS-CN results were 0.71 and 0.66, respectively. The SOL_K by daily SCS_CN method was calibrated at 75.5 mm/hr, 1,000 times greater than the hourly G&A method. The next sensitive parameters for the hourly simulation were lag time of lateral flow (LAT_TIME) and lag time of surface runoff (SURLAG).

ANSYS Simulation of VHF Ceramic Resonator Using Thickness-longitudinal vibration mode (두께 진동모드를 이용한 고주파 세라믹 Resonator의 ANSYS Simulation)

  • 홍재일;윤현상;민석규;윤광희;류주현;김종선;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.259-262
    • /
    • 2000
  • In this study, 3.1$\times$3.7$\times$0.365 $\textrm{mm}^2$ model of thickness-longitudinal vibration mode VHF ceramic resonator with (Pb,Ca)(Co,W,Ti)O$_3$ ceramics was simulated by ANSYS according to the electrode size. With the variations of electrode size of the model, fundamental and the third overtone dynamic ratio was investigated. At the ratio of electrode to model thickness(1/t) 2.5, third overtone dynamic ratio was largely increased. That model is suitable for 20 MHz resonator.

  • PDF