• Title/Summary/Keyword: MM5/UAM-V

Search Result 2, Processing Time 0.02 seconds

Numerical Simulation of Ozone using UAM-V on Summer Episode in the Costal Urban Area, Busan (UAM-V를 이용한 부산지역 고농도 오존사례 수치모의)

  • 김유근;오인보;황미경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • Temporal and horizontal distributions of surface ozone concentrations covering the Busan metropolitan area were simulated by UAM -V (The Variable grid Urban Airshed Model) that was run with meteorological inputs taken from MM5 for ozone episode day (18 July 1999). UAM-V underestimated the daily maximum ozone con-centration about 14 ppb on average at all monitoring sites within Busan area comparing with observed value. but the correlation between observed and simulated values showed quite significant (R = 0.896, p< 0.01 on average). Higher concentrations of ozone occurred near the city center and industrial areas (western side of city) with high levels of anthropogenic source in the morning, and transport of ozone and its precursors by sea breeze developed in the afternoon contributed to elevated ozone levels in downwind rural areas. Particalarly in slightly downwind area of city center, the highest daily maximum ozone concentration ($\geq$120 ppb) was simulated by UAM-V at 1400 LST. Consequently, local environments including emission distributions and land -sea breeze circulation influenced ozone distributions in the Busan metropolitan area.

Effects of Late Sea-breeze on Ozone Distributions in the Coastal Urban Area (연안도시지역 해풍지연이 오존분포에 미치는 영향)

  • 오인보;김유근;황미경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.345-360
    • /
    • 2004
  • The late sea-breeze and its impacts on ozone distributions were investigated during April to September from 1998 to 2002, in the Busan metropolitan area (including surrounding areas) using the surface ozone concentrations (obtained at 9 monitoring sites), local meteorological variables (obtained near the shore), together with synoptic data. The urban scale ozone concentration was also simulated using the MM5/UAM-V to better understand the role of late sea-breeze in Busan. The results from observation study showed that most of the late sea-breeze occurred when weak offshore synoptic flow (northwesterly) suppressed development of sea - breeze, and the ozone concentration level and frequencies exceeding ozone standard increased with the onset time of sea breeze. We also found that the late sea-breeze clearly induces relatively weak wind speed and high temperature during the daytime As a result it enhances the photochemical ozone accumulation and delays the occurrence time of the averaged maximum ozone concentrations. The results of simulation for high ozone episode (24 August, 2001) by MM5/UAM -V revealed that the late sea-breeze interacted with weak offshore synoptic wind can contribute significantly to high ozone concentration in the coastal urban area. The simulated horizontal and vertical distribution of ozone concentration indicated that ozone can be accumulated over the sea under stagnant condition and return to the land in the late afternoon with the sea breeze, suggesting both the relationship between late sea-breeze and recirculation and the importance of late sea -breeze effects influencing severe ozone pollution in Busan.