• Title/Summary/Keyword: MM(coated mortar)

Search Result 7, Processing Time 0.019 seconds

Estimation of Crystal Production in Microstructure of Mortar Cooated with Siliceous Slurry Coatings (규산질비분말혼합시멘트계도포방수재료를 도포한 몰탈 조직에서의 결정생성 평가)

  • 오상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.89-92
    • /
    • 1993
  • This paper deals with the effect of siliceous slurry coatings on mortar microstructure under a damp environment. For estimation on effect of siliceous slurry coating, microstructure of coated mortar was observed through SEM. Crystal production in mivrosturcture of coated mortar was periodically increased, and more produced in mortar of high water-cement ratios. And they were generated mainly in mortar ranging from the surface to the inside about 2.5 or 3mm deep.

  • PDF

The Development of Measuring Method of Coated Steel Corrosion in Mortar by Transient Electro-Magnetic(TEM) Method (과도전자탐사법에 의한 모르타르 중의 코팅 철근의 부식 측정 방법 개발)

  • Lee, Sang-Ho;Han, Jeong-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.108-115
    • /
    • 1999
  • To study measurement of coated steel corrosion in mortar, a transient electro-magnetic(TEM) method was adapted. The sensors were made of enamelled wire with diameter of 0.25mm(transmitter), 0.1mm(receiver) and the secondary electro motive force(EMF) was measured with SIROTEMIII. The sensors configuration was used as in loop configuration. After coated steels were corroded by the salt spray during 3, 7, 15, 25days, they were embedded in mortar which were made from sand : cement : water ratio of 2 : 1 :0.5. To investigate coated steel corrosion in mortar, the sensors were used. ( sensorl - $T_x$ : $4{\Omega}$, $R_x$ : $10{\Omega}$, $3{times}3cm$, sensor2 - $T_x$ : $8{\Omega}$, $R_x$ : $10{\Omega}$, $3{times}3cm$, sensor3 - $T_x$ : $4{\Omega}$, $R_x$ : $10{\Omega}$, $6{times}6cm$, sensor4 - $T_x$ : $8{\Omega}$, $R_x$ : $10{\Omega}$, $6{times}6cm$). The obtained results showed that the secondary EMF was decreased with specimens of 3, 7days corroded coationg steel in mortar and then increased with specccimens of 15, 25days corroded one. And it was confirmed that measurement of coated steel corrosion in mortar by a transient electro-magnetic(TEM) method is possible.

  • PDF

Salt damage resistance of mortar substrate coated by the urethane and acrylic waterproofing membranes (우레탄계와 아크릴계 도막 방수재가 도포된 바탕 모르타르의 염해 저항성 평가)

  • Lee, Jun;Miyauchi, Hiroyuki;Koo, Kyung-Mo;Choe, Gyeong-Cheol;Miyauchi, Kaori;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.329-331
    • /
    • 2013
  • The salt damage resistance of waterproofing membrane was evaluated on the cracked mortar substrate. The types of specimens are urethane, acrylic waterproofing membrane, and no coating mortar substrate. After these specimens were cured by water curing for 4 weeks, they were cured by atmospheric curing at 20±2Co for 8 weeks. The salt water immersion test was carried out by following KS F 2737, and the penetration depth of chloride ion into substrate was measured in 1, 4, 8, and 13 weeks. As a result, in the case of non coating specimen, the chloride ion penetrated within one week. In the coated specimens, a regardless of the membrane type, the chloride ion did not penetrate during 13 weeks-tests on condition that the cracked width of substrate is less than 0.3mm. Also, the penetration speeds of the coated specimens were lower than that of non coating specimen. Therefore, our results reached a conclusion that waterproofing membrane has high salt damage resistance.

  • PDF

Corrosion Inhibition of Steel Rebar in Concrete with the Coated MCI 2022

  • Bezad Bavarian;Lisa Reiner;Kim, Chong Y.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.63-67
    • /
    • 2002
  • The induced chemical and salt solution in water or admixture are originated to the corrosion process of the steeo rebar. These liquids penetrate into concrete as the accompanied by the chemical reaction and cause to attack the steel rebar in concrete. Concrete surfaces which it exposed to deicing, water and sea water is allowed to enter the chlorides in the structures. To prevent from the source of corrosion and deterioration Is subjected to put an end to corrode or reduce to contaminate on the steel rebar. As this reason the MCI 2022 products are applied to the surface of concrete and steel rebar. The concrete samples were made of to the kind of four, i.e. RF, MR, MS, and MM. Corrosion inhibitor is applied to coat on the surface of concrete after it had been cured for 28days. Specimen were immersed in a 3.5% sodium chloride solution. Concrete specimen were tested to determine the changes of the resistance polarization, Rp, over a 22 weeks period. MCI 2022 is significantly shown the corrosion inhibition of steel rebar in 3.5% NaCl solution. In the each different concrete sample, MS and MM is seemed to be better than others. The results are proofed that MCI 2022 is promised to maintain the inhibition of corrosion with high resistance polarization of the steel rebar in concrete.

  • PDF

A study on the characteristic of fire protection covering for high strength concrete (고강도 콘크리트 내화피복 특성연구)

  • Song, Young-Chan;Lee, Sea-Hyun;Kim, Woo-Jae;Yang, Wan-Hee;Park, Dong-Cheol;Baik, Byung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.429-432
    • /
    • 2006
  • In this study a board was made with good fireproof materials of which test was conducted according to the fireproof test for KS F 2257 construction members, and the temperature in coated steel which has a possibility to explode with concrete surface was measured. It is not appropriate to use normal mortar or mortar covering mixed with P.P. fiber to take a measure to prevent the explosive splalling of high-strength concrete. To finalize an Al-Si (aluminosilicates) board-requires over 30mm in thickness at the minimum for the required fire resistance performance and explosion prevention.

  • PDF

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.

Development and Performance Evaluation of a Two-component Thin Spray-on Liner to Guarantee Its Homogeneous Qualities and to Reduce Dust (균질한 품질 확보와 분진 저감을 위한 2성분 박층 뿜칠 라이너의 개발과 성능평가)

  • Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Hwang, Gwi-Sung;Kim, Jintae;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.441-453
    • /
    • 2016
  • This study aimed to develop a two-component TSL suitable for reducing dust and guaranteeing homogeneous qualities during its spraying. Its performance was evaluated by a series of laboratory and field tests. High ductility of two-component TSL prototypes resulted in increasing their elongation at break even though their tensile strengths were slightly lower than those of one-component powder TSLs. One prototype of the two-component TSLs developed in this study was verified to satisfy every criterion specified by EFNARC (2008). Especially, it increased the average compressive strength of mortar specimens by 50% even when it coated them only with the thickness of 3 mm. From a preliminary spraying test, a spraying machine suitable for the developed TSL prototype was derived and modified. After its field application, dust and rebound generated during its spraying works were found to be very minimal. Its spraying rate was recorded to be approximately $60m^2/hr$. In addition, it showed a very rapid hardening characteristic compared with general sprayable waterproofing membranes.