• Title/Summary/Keyword: MLSS

Search Result 218, Processing Time 0.023 seconds

Analysis on effect of heavy metal and Retention time to nitrification using industrial wastewater (중금속과 체류시간이 산업단지하수 질산화에 미치는 영향)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.390-397
    • /
    • 2018
  • The Municipal Wastewater Treatment Plant(MWTP), located industrial estate, has a problem of decreasing nitrification efficiency. In this research, it was analyzed that effect of heavy metals and retention time to nitrification based on operational result of laboratory scale reactors. And suggest improving MWTP operation method for increasing nitrification efficiency based on findings. According to operational result, laboratory scale reactor shows over 60% nitrification efficiency over hydraulic retention time(HRT) 0.5 day. However, the nitrification efficiency of S MWTP(high heavy metal concentration) sample was lower than that of A MWTP(low heavy metal concentration) sample in same operational condition. The main reason was heavy metals in industrial wastewater. This heavy metals was acted as inhibitor to nitrifier in reactors. So, activity of nitrifier was analyzed based on specific nitrification rate(SNR). The SNR of S MWTP sample shows 0.13 ~ 0.21 mg NH4/gMLSS/hr and that of A MWTP sample shows 0.74 mg NH4/gMLSS/hr. As a result, the activity of nitrifier of S MWTP was lower than that of A MWPT. In other words, retrofit methods for improving nitrification efficiency in MWTPs located industrial estate were that to increase retention time in biological treatment process or to pretreat heavy metal before being injected biological treatment process.

Initial Operating Condition of Membrane Bioreactor with PVDF Hollow Fiber and Permeate Reuse (PVDF 중공사막을 이용한 막생물반응기의 초기 운전조건 설정 및 여과수 재활용)

  • Shin, Choon-Hwan;Kang, Dong-Hyo;Park, Hae-Sik;Cho, Hyun-Kil
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • In this paper, 4 bundle modules of PVDF hollow fiber membrane from Woori Tech company (Korea) were manufactured in a treatment capacity of 10 ton/day. A membrane bioreactor (MBR) pilot plant was installed at Sooyoung Wastewater Treatment Plant in Busan. An alternating aeration process was selected to avoid the concentration profile of suspended solid (SS) in the MBR. For stable operation, raw wastewater with mixed liquor suspended solid (MLSS) of about 1,000 ppm, which was in-flowed from the aeration tank of the wastewater treatment plant, was fed and filtered through the pilot plant. Subsequently the pilot plant were washed three times with washing water: once with ethanol solution, once with a solution of 5% NaOCl, and finally with washing water. After the chemical washing, the remaining water in the MBR was fed into the pilot plant. As a result, the SS removal efficiency was found to be more than 99.9%. The amount of filtrate with the aeration tank influent decreased by 16%, compared with that from the initial conditions, giving rise to 30% increase in the suction pressure. These results were used to set up continuous operation conditions. The results from the continuous operation with influent MLSS of 1,900 mg/L showed that the SS removal efficiency was about 99.99% and that the amount of filtrate and the suction pressure were $42{\sim}52L/m^2$ and 16~20 cmHg, respectively, indicating stable operation of the pilot plant. However, for the reuse of wastewater, methods need to be sought to avoid growth of algae which affects the SS removal efficiency at inlet and outlet of the permeate tank.

Buffering effects of shock loads in sequencing batch reactor (SBR에서 충격부하에 따른 완충효과)

  • Ji, Dae-Hyun;Lee, Kwang-Ho;Lee, Jae-Kune
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.581-587
    • /
    • 2008
  • In this study, we investigated the buffering effect with different COD, $NH_4{^+}-N$ and TP shock loads on the performance of lab-scale Sequencing Batch Reactor(SBR) using synthetic wastewater. This study was operated under the following conditions : HRT, 12 hrs : MLSS, 2,000 mg/L : F/M ratio, $0.2kgCOD/kgMLSS{\cdot}d$ : SRT, 20days, and was increased by a factor, COD : ranging from 200-2000 mg/L, $NH_4{^+}-N$ : ranging from 30-300 mg/L, T-P : ranging from 5-50 mg/L in the reactor. As results, COD removal rate at different shock loads was decreased until 42.1%(stable state : 95%) and concentration with effluent was higher than 695 mg/L(at Run 6). In case of $NH_4{^+}-N$ removal rate was decreased until 35.8% from 97.0% and also T-P removal rate was decreased until 5.0%. Effluent concentrations of COD, $NH_4{^+}-N$ and T-P were rapidly increased according to shock loads and needed 3, 4 and 6 additional cycle times for recovering the stable condition.

Effects of Aerobic/non-aerobic Starvation Periods on the Physical Characteristics of Activated Sludge and Organic Removal Efficiency in SBR (폭기/비폭기 상태의 기근기간이 활성슬러지의 물리적 특성 및 유기물 제거에 미치는 영향)

  • Oh, Hye-Ran;Kim, Sang-Soo;Moon, Byung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.343-348
    • /
    • 2010
  • The objective of this study was to investigate the effects of starvation periods with aerobic or non-aerobic conditions on the organic removal efficiencies and physical characteristics of activated sludge for treating saline and non-saline wastewater. During the experiment, MLSS, MLVSS, sludge volume index (SVI), floc size and fractal dimension, $COD_{Mn}$ removal efficiencies were monitored. The reductions of MLSS, MLVSS and SVI with maintaining the sludge under a non-aerobic condition during starvation periods were smaller than those under a aerobic condition. Floc size, fractal dimension and $COD_{Mn}$ removal efficiencies were less decreased under non-aerobic condition than under aerobic condition. And SVI were strongly correlated with floc size and fractal dimension. Consequently, the result showed that maintaining the activated sludge under non-aerobic starvation conditions was better strategy than that under aerobic starvation conditions as it adapted and resisted to starvation.

Nitrogen and Phosphorus Removal of Municipal Wastewater with Temperature in CNR Process (섬모상담체를 이용한 혐기, 무산소, 호기공정(CNR공법)의 온도변화에 따른 하수의 질소, 인의 제거특성)

  • 김영규;양익배;김인배;이영준
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.112-118
    • /
    • 2001
  • The aim of this study was to evaluate on the removal effect of total nitrogen and phosphorus in municipal wastewater with temperature change from 1$0^{\circ}C$ to 24$^{\circ}C$ in CNR(Cilia Nutrient Removal) process. CNR process is the process combining $A^2$/O process with cilium media of H2L company. The removal efficiencies for T-N were found to be 57.9% at 1$0^{\circ}C$ below, 53.7% at 10-2$0^{\circ}C$, 52.2%at 20-24$^{\circ}C$ and 44.4% over 24$^{\circ}C$ respectively. The removal efficiencies for T-P were 53.3% at 1$0^{\circ}C$ below, 59.1% at 10-2$0^{\circ}C$, 72.4% at 20-24$^{\circ}C$ and 50.0% over 24$^{\circ}C$ respectively. The specific nitrification rate (kg NH$_3$-N/kg MLSS.d) of Oxic basin was 0.088 and 0.053 at 1$0^{\circ}C$ below, 0.077 at 10-2$0^{\circ}C$, 0.097 at 20-24$^{\circ}C$ and 0.088 over 24$^{\circ}C$ respectively. The specific denitrification rate (kg NH$_3$-N/kg MLSS.d) in anaerobic and anoxic was 0.013, 0.008 respectively.

  • PDF

Effects of the Membrane Materials on the Filtration Characteristic in the Membrane Separation-activated Sludge Process (막 재질에 따른 막분리활성오니법의 여과 특성)

  • Kim, Hyung-Soo;Cho, Sang-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.42-49
    • /
    • 1998
  • By checking the variations of the raw water quality and MLSS, the effects of the membrane materials on permeable flux and quality of the treated water were investigated in this study. Due to the stability for high variations of MLSS, tubular type membranes were selected. Polysulfone group membranes and polyamide group membranes were tested. The crossflow operation mode was adapted, because membrane fouling problems could be easily controlled by adjusting the linear velocity. Due to the high concentration of the raw water, polyamide group membranes were originally expected to achieve two times higher permeable fluxes. However, difference was only approximately $20l/m^2{\cdot}h$ at $3kgf/cm^2$. It might be resulted from the high concentration of organic materials in the effluent of the RBC process. For the quality of the treated water, polyamide group membranes were slightly less effective. It might be resulted from the fact that polysulfone group membranes had more adsorptive capacities for the organic materials. The effects of temperature on the permeable flux were found to be significant. Despite of the irregular injection of raw water, the quality of the treated water was kept stable.

  • PDF

A Dynamic Simulation for Refinery Wastewater in Activated Sludge Treatment (활성슬러지법에서 정유폐수처리의 동역학적 Simulation)

  • Lee, Woo Bum;Kim, Jong O
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2017-2023
    • /
    • 2000
  • A dynamic model was applied to compare the environmental parameters and effluent characteristics of refinery wastewater in activated sludge treatment. The measured DO, pH, MLSS, and COD values were compared with the simulated their results in the activated sludge reactor. As results of simulation. good agreements between the measured and simulated results were investigated. The simulated and measured effluent COD were 19.0~19.4mg/L and 23.1mg/L. respectively. The simulated and measured DO were 1.9~2.4mg/L and 2.2mg/L. respectively.

  • PDF

Operation Characteristics of the SBR Process with Electro-Flotation (EF) as Solids-liquid Separation Method (전해부상을 고액분리 방법으로 적용한 SBR 공정의 운전 특성)

  • Park, Minjeong;Choi, Younggyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.340-344
    • /
    • 2008
  • Electro-flotation (EF) was applied to a sequencing batch reactor process (SBR) in order to enhance solids-liquid separation. Solids-liquid separation was good enough in the SBR coupled with EF (EF-SBR) and it was possible to maintain the concentration of mixed liquor suspended solids (MLSS) high in the EF-SBR. Under moderate organic loading condition (COD loading rate: 6 g/day), control SBR (C-SBR) showed similar treatment efficiencies with the EF-SBR. Under high organic loading condition (COD loading rate: 9.6 g/day), the solids-liquid separation in the C-SBR was deteriorated due to proliferation of filamentous bulking organisms at high F/M ratio. However, the EF-SBR was operated stably and with the high MLSS concentration (above 4,000 mg/L) regardless of the organic loading conditions during overall operating period leading to the satisfactory effluent quality. Gas production rate of the electrodes was gradually decreased because of anodic corrosion and scale build-up at the surface of cathode. However it could be partially overcome by use of corrosion-proof electrode material (SUS-316 L) and by periodic current switching between the electrodes.

An Experimental Study on Wastewater Treatment by Modified Activated Sludge Process (변형된 활성슬러지공법의 폐수처리에 관한 실험적 연구)

  • 채수권;연기석
    • Water for future
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 1989
  • This study deals with the performance of an acivated sludge system which is modified by the researcher to function without any additional chemical or internal recyle in removing organics, nitrogen, and phosphorus from synthetic wastewater. To improve the nutrient removal efficiency, the researcher utilized the anoxic, anaerobic, and aerobic reactor sequences with a single sludge return, whiched to nitrification/denitrification and phosphorus release/overplus accumulation. A bench scale system was operated with a view to investigating the reaction characteristics of each reactor, and to measuring the biological kinetic coefficients(Y, $K_d$, k, $K_s$) for theremoval of COD in relation to the mean cell residence time at five different MLSS concentrations, 5000, 4200, 3300, 2600, and 1900 mg/l. The results of the research showed that organic substance and nutrient were removed simultaneously by this modified activated sludge process. And the process kad 66%-99% ortho-p removal efficiency.

  • PDF

A Study on Efficient Operation of Cosmetic Wastewater Treatment Facility (화장품 폐수처리시설의 효율제고를 위한 처리비 영향인자에 관한 연구)

  • 장명옥;조춘구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.89-106
    • /
    • 1999
  • This research was undertaken to manage the waste treatment facility in cosmetic plants more effectively, The discharge and the treatment of pollutant in cosmetic plants were analyzed. And several factors which had an influential effect of the treatment cost, were found out. Effective management methods are proposed. Since average operating rate is estimated from 29% to 56%, the facility has an 44% to 71% surplus capacity. The pollutant removal rate influences highly on the treatment cost. The amount of MLSS is the factor that effects the removal rate. Chemical cost and the amount of the sludge are the influencing factors. To reduce the waste water treatment cost,-the saving of SV3O use and the management of MLSS amount are essential.

  • PDF