• Title/Summary/Keyword: MLSS

Search Result 219, Processing Time 0.025 seconds

The Evaluation of Effect Indicators on Estimation of Aeration Volume for Wastewater Treatment Plants (하수처리장 송풍량 산정에 미치는 영향 인자들의 평가)

  • Kim, Byoung Soo;Choi, Mi Young;Kwon, Hyuck;Kim, Jin Man;Cha, Woon Ou;Chun, Wan Myung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.38-44
    • /
    • 2013
  • To construct the system controlling the aeration volume for D wastewater treatment plant effectively, the fluctuation of aeration volume was analyzed with changes of factors of the influent. As a result, the range of aeration volume was wide to maintain the certain concentration of DO, and the key factor to decide the aeration volume was found to be the temperature, F/M ratio, the loading rate of $BOD_5$ and T-N of the influent. Among the factors, the temperature of the influent had the most decisive effect on the aeration volume. The result showed that $45.8m^3/h$ of the aeration volume was needed with an increase of $1^{\circ}C$ of the influent, and the effect of the season was considered. Since the temperature of the influent is affected by a change of season, same as F/M ratio, the loading rate of the influent and the concentration of MLSS, it seemed that the change of the temperature of the influent affects the aeration volume even more. Therefore, it is preferable to consider the loading rate of the influent and F/M ratio altogether, rather than considering only one factor when deciding aeration volume.

Effective correlation between coagulation efficiency and the sludge settling characteristic (슬러지 응집효율이 침강특성에 미치는 상관관계에 대한 연구)

  • Han, Gee-Bong;Yoon, Ji-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.151-159
    • /
    • 2006
  • In these days, the importance of sludge treatment is emerging due to the London Convention, so this study was conducted to propose the alternatives for the improved sludge treatment on the organic wastewater and sewage sludge with JAR test and settling column equipped with stirrer. The minimum coagulant dosage to earn the optimum sludge settling efficiency resulted from 200mg/l and each critical sludge settling interface showed no distinct difference when PAC was dosed over 200mg/l. Accordingly, Clarification Rate(CR) with 200mg/l dosage was calculated to CR=(Ho-Ht) / Ho=1-0.4=0.6 because the critical sludge settling height stopped at 0.4. The settling velocity of sludge interface was decreased with the increase of MLSS concentration but rather increased with MLSS concentration over 1,000mg/l. This resulted from positive effect of interacted coagulation for floc formation by transfer to the zone of compressed settling when MLSS concentration increased over 1,000mg/l. The settling velocity of sludge interface showed $28.66{\times}10^{-3}/min$ for average settling velocity of sewage sludge which is 6.7 times higher than $4.25{\times}10^{-3}/min$ for average settling velocity of organic wastewater sludge. The increasing rate of CR for organic wastewater activated sludge was higher than that of settling velocity under 200mg/l of PAC dosage but settling velocity was higher than CR over 200mg/l of PAC dosage. However, in case of sewage sludge, the differential rate of CR was low when PAC dosage was increased but the settling velocity was suddenly increased with over 200mg/l dosage. Therefore coagulation effect was more efficient to MLSS settling velocity rather than SS removal effect in the supernatant.

  • PDF

제약폐수 활성슬러지 공정에서 슬러지의 생물학적 활성 측정

  • Mun, Sun-Sik;Lee, Sang-Hun;Choe, Gwang-Geun;Lee, Sang-Hun;Mun, Hong-Man;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • In this study, biological activity in activated sludge process for pharmaceutical wastewater was analyzed by using respirometer. For various amounts of BOD loadings. oxygen uptake rate was measured and kinetic paramelers were evaluated. By repetition of experiments, optimal operating conditions (eg. MLSS. BOD loadings. oxygen concentration, etc) were decided for the enhancement of activated sludge process.

  • PDF

Efects of Chitosan on Cell Flocculation in Soybean Curd Wastewater Treated by Photosynthetic Bacteria (Chitosan에 의한 광합성세균 처리 두부공업폐수의 균체 응집효과)

  • 오준현;조홍연;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.763-769
    • /
    • 1995
  • As a mean to recover photosynthetic bacterial(PSB) cells and its practical uses in food industrial wastewater treatment, various biodegradable polyelectrolytes were first investigated for flocculation of suspended colloids in the PSB treatment process of soybean curd wastewater. Anionic polyelectrolytes such as sodium alginate and carrageenan were not effective but a cationic polyelectrolyte chitosan isolated from Portunus trituberclatus showed very effective flocculation activity. The concentration of chitosan, pH and temperature of wastewater for maximal flocculation were 40 mg/l, pH 7 and room temperature, respectively. Test using deacetylated chitosan to various degree showed higher flocculating activities in samples deacetylated over 75% and time for maximum flocculation was 40 min by stirring slowly under the above optimal conditions. Chitosan was not only effective to flocculate cells but also removed COD and MLSS of the wastewater. COD of 42% and MLSS of 87% were removed by addition of chitosan to the soybean curd wastewater treated with PSB.

  • PDF

Uptake of Wastewater Organic Matter to Activated Sludge

  • Nam, Se-Yong;Kim, In-Bae
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.493-496
    • /
    • 2007
  • The influences of contact time and ratio of food to microorganism (F/M) on uptake of wastewater organic matter in a short contact process were investigated using three activated sludge batch reactors fed with synthetic wastewater, sewage and livestock wastewater. About 64% of influent soluble chemical oxygen demand (SCOD) in the synthetic wastewater and 61% of SCOD in the sewage and 43% of SCOD in the diluted livestock wastewater were adsorbed into the activated sludge within 30 min. The specific mass of organic matter uptaken in the synthetic wastewater was 55 mg SCOD/g mixed liquor suspended solids (MLSS). In the same manner, 20 and 14 mg SCOD/g MLSS were calculated as the values in the sewage and livestock wastewater, respectively.

Advanced Wastewater Treatment using Bioreactor Combined with Alternative Membrane (하수의 고도처리를 위한 저비용 저에너지의 대체 막을 조합한 생물반응기의 개발)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • In order to decrease the high costs of membrane process, we have tried to develop two alternatives to membrane; a cartridge type filter and a metal membrane were tested for the high permeation flux with low cost and low energy. This research mainly focused on three points; 1) operation with high permeation flux by using of a cartridge type filter and a metal membrane, 2) removals of the filterable organic materials (FOC) by pretreatments for the membrane fouling control, and 3) advanced wastewater treatment by SMBR process with intermittent aeration and high MLSS. An Intermittently aerated membrane bioreactor using a submerged micro filter (cartridge type) was applied in laboratory scale for the advanced wastewater treatment. To minimize membrane fouling, intermittent aeration was applied inside of the filter with $3.0kg_f/cm^2$. The experiments was conducted for 6 months with three different HRTs (8, 10, 12 hr) and high MLSS of 6,000 and 10,000mg/L. The filtration process could be operated up to 50 days with permeation flux of 500LMH. Regardless of the operating conditions, more than 95% of COD, BOD and SS were removed. Fast and complete nitrification was accomplished, and denitrification was appeared to be the rate-limiting step. More than 75% T-N could be removed due to the endogenous denitrification. T-P removal efficiency was increased to 80% under the condition of MLSS 10,000mg/L.

Sludge Thickening Performance of the Filtration Bio-reactor Equipped with Shadow Mask Filter Module (Shadow mask 여과 모듈을 이용한 슬러지 농축 특성)

  • Jung, Yong-Jun;Kwon, Koo-Ho;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • In order to recycle the waste material and to develop the thickening unit of waste activated sludge from wastewater treatment facilities, the filtration bio-reactor equipped with a shadow mask filter module was employed for this work from which the operating properties and parameters were drawn. The sludge thickening and filtration unit is made of cylindrical acryl tank(12cm i.d. ${\times}$ 58cm height: working volume of 6L), where the flat-sheet type of shadow mask filter module(pore size: 220~250um, opening area: 34.8~39.6%) was installed and the effluent was withdrawn from the effluent port at the lowest point of the reactor, and the filtration was performed only by the hydraulic pressure. For evaluating the operating performance of this reactor, some parameters such as the solid-liquid separation of different biomass concentrations, the water quality of filtrate, the aeration cleaning time and the cleaning effect were investigated. Depending on the MLSS concentrations, the different time to withdraw 3L of filtrate was required in which the longer filtration time was necessary for the higher MLSS concentrations caused by the thicker formation of cake layer: 40 minutes for 5,000 mg/L, 70 minutes for 10,000 mg/L and 100 minutes for 15,000 mg/L, where the concentrations of SS were 8.9, 6.7 and 6.5 mg/L, respectively. Under the same operating conditions (the intensity of aeration cleaning: 80 L/min, MLSS: 10,000 mg/L), the proper aeration cleaning time was revealed 30 seconds, and the stable formation of cake layer was in the range of 10 to 15 minutes. Therefore, the shadow mask considered as a waste material can be of use as a filter material for the sludge thickening system.

A STUDY ON A MULTI-LEVEL SUBSTRUCTURING METHOD FOR COMPUTATIONS OF FLUID FLOW (유동계산을 위한 다단계 부분 구조법에 대한 연구)

  • Kim J.W.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2005
  • Substructuring methods are often used in finite element structural analyses. In this study a multi-level substructuring(MLSS) algorithm is developed and proposed as a possible candidate for finite element fluid solvers. The present algorithm consists of four stages such as a gathering, a condensing, a solving and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At the highest level, each sub-domain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each sub-domain has been replaced by a sequential static condensation of gathered element matrices. The global algebraic system arising from the assembly of each sub-domain matrices is solved using a well-known iterative solver such as the conjugare gradient(CG) or the conjugate gradient squared(CGS) method. A time comparison with CG has been performed on a 2-D Poisson problem. With one domain the computing time by MLSS is comparable with that by CG up to about 260,000 d.o.f. For 263,169 d.o.f using 8 x 8 sub-domains, the time by MLSS is reduced to a value less than $30\%$ of that by CG. The lid-driven cavity problem has been solved for Re = 3200 using the element interpolation degree(Deg.) up to cubic. in this case, preconditioning techniques usually accompanied by iterative solvers are not needed. Finite element formulation for the incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et al.[9].