• Title/Summary/Keyword: MLSS

Search Result 218, Processing Time 0.022 seconds

Bio-regeneration of Ion-exchange Resin for Treating Reverse Osmosis Concentrate (RO 농축폐액의 처리를 위한 이온교환수지의 생물재생)

  • Bae, Byung-Uk;Nam, Youn-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.517-523
    • /
    • 2014
  • In order to remove both nitrate and sulfate present in the concentrate of RO(reverse osmosis) process, a combined bio-regeneration and ion-exchange(IX) system was studied. For this purpose, both denitrifying bacteria(DNB) and sulfate reducing bacteria(SRB) were simultaneously cultivated in a bio-reactor under anaerobic conditions. When the IX column containing a nitrate-selective A520E resin was fully exhausted by nitrate and sulfate, the IX column was bio-regenerated by pumping the supernatant of the bio-reactor, which contains MLSS concentration of $125{\pm}25mg/L$, at the flowrate of 360 BV/hr. Even though the nitrate-selective A520E resin was used, the breakthrough curves of ionic species showed that sulfate was exhausted earlier than nitrate. The reason for this result is due to the fact that the concentration of sulfate in RO concentrate was 36 to 48 times higher than nitrate. The bio-reactor was successfully operated at a volumetric loading rate of 0.6 g $COD/l{\cdot}d$, nitrate-N loading rate of 0.13 g $NO_3{^-}-N/l{\cdot}d$, and sulfate loading rate of 0.08 g $SO_4{^{2-}}/l{\cdot}d$. The removal rate of SCOD, nitrate-N, sulfate was 90, 100, and 85%, respectively. When the virgin resin was fully exhausted and consecutively bio-regenerated for 2 days, 81% of nitrate and 93% of sulfate were reduced. When the virgin resin was repeatedly used up to 4 cycles of service and bio-regeneration, the ion-exchange capacity of bio-regenerated resin decreased to 95, 91, 88, and 81% of virgin resin.

Characteristics of Carbon Source Biosorption (유기물 생흡착 현상에 관한 기초연구)

  • Lee, Dong-Hoon;Lee, Doo-Jin;Kim, Seung-Jin;Chung, Jonwook;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Biosorption technology was used to remove hazardous materials from wastewater, herbicide, heavy metals, and radioactive compounds, based on binding capacities of various biological materials. Biosorption process can be explained by two steps; the first step is that target contaminants is in contact with microorganisms and the second is that the adsorbed target contaminants is infiltrated with inner cell through metabolically mediated or physico-chemical pathways of uptake. Until recently, no information is available to explain the definitive mechanism of biosorption. The purpose of this study is to evaluate biosorption capabilities of organic matters using activated sludge and to investigate affecting factors upon biosorption. Over 49% of organic matter could be removed by positive biosorption reaction under anoxic condition within 10 minutes. The biosorption capacities were constant at around 50 mg-COD/mg-MLSS for all batch experiments. As starvation time increased under aerobic or anaerobic conditions, biosorption capacity increased since higher stressed microorganisms by starvation was more brisk. Starvation stress of microorganisms was higher at aerobic condition than anaerobic one. As temperature increased or easily biodegradable carbon sources were used, biosorption capacities increased. Consequently, biosorption can be estimated by biological -adsorbed capability of the bacterial cell-wall and we can achieve the cost-effective and non -residual denitrification with applying biosorption to the bio-reduction of nitrate.

A Study on Membrane Fouling by COD fraction of Influent in Submerged MBR (침지식 MBR을 이용한 유입수의 COD fraction에 따른 막오염 특성 연구)

  • Li, Sang-Jeong;Joo, Jae-Young;Bae, Yoon-Sun;Jung, In-Ho;Lee, Hae-Goon;Jeong, Chang-Hwa;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.681-689
    • /
    • 2011
  • Submerged membrane bio-reactor (SMBR) has several advantages such as high MLSS, long SRT, and low F/M ratio at wastewater treatment. So, this has widely applied over the world and many studies have been conducted. However, membrane fouling remains an inevitable problem. This study was investigated using bench-scale SMBR with three poeration modes. Raw waters were prepared by addition of starch, acetic and fibric acid to recovery water of zeolite. The efficiency of nitrification and COD were very stable as about 95% and 80%, respectively. And critical flux was 128.8L/$m^{2}$/hr. The result of biodegradability test was following values at the each mode : Ss+Xs/$C_{T}$=81.7%, 35.1% and 45.3%, $X_{I}+S_{I}/C_{T}=18.3%$, 64.9% and 54.7%. When particulate matters such as $X_{I}$ and $X_{S}$ in influent are increased, membrane fouling will take place more and more. A relative ratio of filtration resistance to the fouling occurred by the cake layer was increased when increased the portion of $X_{I}$ and polysaccharide. It was thought that the formation of cake layer was promoted due to bond between $X_{I}$ and vicid material s generated from the polysaccharide.

A Study of RCSTP Nutrient Removal Efficiency in Winter Season (동절기 마을하수처리장 영양염류 제거에 관한 연구)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.363-370
    • /
    • 2014
  • Sewage distribution rate in rural area is only 50% level than urban area. Normally, rural area sewage is focused on the reason of water source pollution owing to rural areas were located in near water source. The Korea government is effort to manage the rural community sewage for protect the water source. In this study conducted analysis on rural community sewage treatment plant(RCSTP) nutrient treatment efficiency using operation results on winter season. Research areas are newly constructed in Bong-hwa, Yeong-yang and An-dong areas which are located in near An-dong Im-ha Dam. Based on operation result, sludge retention time(SRT) and mixed liquer suspended solid(MLSS) were effected on RCSTP nutrient treatment efficiency. Thus, it is necessary to manage of operation condition for nutrient treatment efficiency in RCSTP during the winter season.

THE MONITORING OF AEROBIC FLOC-LIKE SLUDGE INFLUENCED BY CALCIUM IONS

  • Yoon, Young H.;Park, Jae-Ro;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.127-133
    • /
    • 2006
  • Aerobic floc-like sludge was formed in a batch reactor and the effect of cations on the formation of aerobic floc-like sludge was studied. In order to enhance the formation (rate) of aerobic floc-like sludge, cations such as $K^+$, $Na^+$, $Ca^{2+}$, and $Mg^{2+}$ were added to the seed sludge. It was found that $Ca^{2+}$ had positive effect on the formation of floc-like sludge, as measured by sludge volume index (SVI) for settle ability. The formation of floc-like sludge was confirmed by the microscopic observation after DAPI staining. The scattered forms of sludge samples at the initial stage became aggregated to form floes after $Ca^{2+}$ addition. To ensure the functions of sludge floes in a treatment plant, the gradient of ionic species around the surfaces of floc-like sludge was monitored by ion selective microelectrodes for ${NH_4}^+,\;{NO_3}^-$, and pH. The effective concentration of $Ca^{2+}$ ion to form floc-like sludge was determined to be 750 mg/L (0.15 mg $Ca^{2+}/mg$ MLSS). Under the effective $Ca^{2+}$ condition, the SVI value was the lowest and large distribution of nitrifying bacteria at the outer surface was observed in the aerobic floc-like sludge. From the results, it was found that the calcium ion functioned as an agent for the formation of aerobic floc-like sludge, resulting in the enhanced nitrification.

A Study on the high-flux MBR system using PTFE flat membrane and coagulant(Alum) for removal of phosphorus (PTFE재질의 평판형 분리막과 인제거를 위해 Alum주입을 적용한 고플럭스 MBR시스템에 관한 연구)

  • Lee, Eui-Jong;Kim, Kwan-Yeop;Kwon, Jin-Sub;Kim, Young-Hoon;Lee, Yong-Soo;Lee, Chang-Ha;Jeon, Min-Jung;Kim, Hyung-Soo;Kim, Jung-Rae;Jung, Jin-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.95-106
    • /
    • 2011
  • Even though MBR processes have many advantages such as high quality effluents, a small footprint and convenience for operation compared to conventional activated sludge processes, there are some shortcomings in terms of the cost and potential fouling incident that keeps MBR (Membrane bioreactor) processes from being widely applied. To reduce these problems, PTFE (Polytetrafluoroethylene) flat sheet membranes that have excellent permeability and durability were tested instead of PVDF (Polyvinylidene fluoride) membrane which is being used widely in water treatment. Low concentration of sodium hydroxide (NaOH) was also added into the membrane modules in order to prevent the membrane fouling as well as to provide the alkalinity. With conditions mentioned above, a pilot-scale MBR system based on the MLE (Modified Ludzack Ettinger) process was operated at flux of 40 $L/m^{2}/hr$ and over 15,000 mg/L MLSS concentration for about 8 months. And coagulant(alum) was added into the membrane tank to remove phosphorus. Although the more coagulant is added the more effectively phosphorus is removed, that can lead to fouling for a long operation(Ronseca et al.,2009). By the way there is a research that fouling grow up after stopping injection of coagulant(Holbrook, 2004). Stable operation of MBR systems was achieved without major chemical cleaning and the effluent quality was found to be good enough to comply with the treated waste water quality regulations of the Korea.

Optimization of air scouring for an effective control of membrane fouling in submerged MBR (침지형 MBR 공정의 공기 세정 최적화를 통한 효율적 막 오염 제어)

  • Kim, Jun-Young;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.645-652
    • /
    • 2016
  • A membrane module including grid was designed and introduced to MBR (membrane bio-reactor) for the purpose of better control of membrane fouling. It could be anticipated that the grid enhances the shear force of fluid-air mixture into the membrane surface by even-distributing the fluid-air to the membrane module. As MLSS concentration, packing density which is expressed in the ratio of the housing and the cross-sectional area of membrane fibers ($A_m/A_t$) and air-flow rate were changed, membrane foulings were checked by monitoring fouling resistances. The total fouling resistance ($R_c+R_f$) without grid installation (i.e., control) was $2.13{\times}10^{12}m^{-1}$, whereas it was reduced to $1.69{\times}10^{12}m^{-1}$ after the grid was installed. Regardless of the grid installation, the $R_c+R_f$ increased as the packing density increased from 0.09 to 0.28, however, the increment of resistance for the grid installation was less than that of the control. Increase in the air flow rate did not always guarantee the reduction of fouling resistance, indicating that the higher air flow rate can partially de-flocculate the activated sludge flocs, which led to severer membrane fouling. Consequently, installation of grids inside the housing have brought a beneficial effect on membrane fouling and optimum air flow rate is important to keep the membrane lowering fouling.

A study on operation and management for TOC removal of public sewage treatment works (하수처리시설에서 총유기탄소(TOC) 처리를 위한 운영·관리 고찰)

  • Jeong, Dong-Hwan;Chung, Hyenmi;Cho, Yangseok;Kim, Eunseok;Kim, Changsoo;Park, Junwon;Lee, Wonseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.535-550
    • /
    • 2018
  • Total organic carbon (TOC) will replace chemical oxygen demand ($COD_{Mn}$) as an effluent water quality standard in public sewage treatment works (PSTWs) from 2021 in Korea. To ensure effective control of TOC in the effluent, investigation was carried out into TOC levels and sewage treatment operation factors in five target PSTWs using anaerobic-anoxic-aerobic ($A_2O$) processes, media, membrane, and sequencing batch reactor (SBR) technologies. TOC removal efficiencies appeared to be 93-96% on average. As a fraction of TOC, biodegradable dissolved organic carbon (BDOC) was reduced from 64% in the influent to 9% in the effluent in these PSTWs. During the investigation, biological treatment processes were applied flexibly for operation factors such as HRT, SRT, MLSS, F/M ratios and BOD volume loads, based on the influent characteristics and design conditions. As a result, we suggest efficient operating conditions in PSTWs by evaluating relationships between TOC removal and operation factors.

A Study on Volume Reduction of Waste Sludge by Aerobic Thermophilic Bacteria (호기성 호열미생물에 의한 하수슬러지 감량화 효율에 관한 연구)

  • Bae, Yoon-Sun;Kim, Soon-Young;Nam, Duck-Hyun;Park, Chul-Hwi;Kim, Jin-Su;Takada, Kazu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.497-505
    • /
    • 2005
  • Domestic Sewage Treatment Plants are mostly based on biological treatment, in which large amounts of excess sludge are generated and occupy about 40 ~ 60% of the total sewage treatment costs. Several methods for sludge treatment has been so far reported as upgrading biodegradation of sludge; heat treatment, chemical treatment, including thermo-alkali and ozone, mechanical treatment including ultrasonic pulverization. But, it has a limitation in case of reducing the amount of excess sludge which are already producted. In this study, application of excess sludge reduction process using thermophilic aerobic bacteria for activated sludge was examined. The research was carried out two different stage. one for a biological wastewater treatment and the other for a thermophilic aerobic solubilization of the waste sludge. A portion of excess sludge from the wastewater treatment step was into the thermophilic aerobic sludge solubilization reactor, in which the injected sludge was solubilized by thermophilic aerobic bacteria. The solubilized sludge was returned to the aeration tank in the wastewater treatment step for its further degradation. Sludge solubilization reactor was operated at $63{\pm}2^{\circ}C$ with hydraulic retention time(HRT) of 1.5 ~ 1.7 day. Control group was operated with activated sludge process(AS) and experiment group was operated with three conditions(RUN 1, RUN 2, RUN3). RUN 1 was operated with AS without sludge solubilization reactor. RUN 2 were operated with AS with sludge solubilization reactor to examine correlation between sludge circulation ratio and sludge reduction ratio by setting up sludge circulation ratio to 3. RUN 3 was operated with sludge circulation ratio of 3 and MLSS concentration of 1,700~2,000mg/L to examine optimum operation condition. The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge solubilization ratio and sludge reduction ratio were 53. 7%, 95.2% respectively. After steady state operation, average concentration of TBOD, SBOD, $TCOD_{Cr}$, $SCOD_{Cr}$, TSS, VSS, T-N, T-P of effluent were 4.5, 1.7, 27 .8, 13.8, 8.1, 6.2, 15.1, 1.8mg/L in the control group and were 5.6, 2.0, 28.6, 19.1, 9.7, 7.2, 16.1, 2.0mg/L in the experimental group respectively. They were appropriate to effluent standard of Sewage Treatment Plants.

Behavior of Soluble Microbial Products in a Submerged Membrane Separation Activated Sludge Process (침지형 막분리 활성오니법에 있어서 생물대사성분의 거동)

  • Cha, Gi-Cheol;Lee, Dong-Yeol;Shim, Jin-Kie;Lee, Yong-Moo;Yoo, Ik-Keun;Ann, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.959-970
    • /
    • 2000
  • A laboratory-scale experiment was conducted to investigate the effect of soluble microbial products(SMP) on permeate flux in the submerged membrane separation activated sludge process. Continuous and batch filtration test were operated to understand mechanism of relationship between membrane fouling and SMP. Synthetic wastewater(phenol) was used as a carbon source. Hydraulic retention time(HRT) and mixed-liquor volatile suspended solids(MLVSS) of the reactor were kept at 12 hours and 9.000mg VSS/L, respectively. Batch filtration tests ($J_{60}/J_o$) using the mixed liquor from reactor showed that the increase of accumulated SMP concentration in the reactor caused to the decreasing permeate flux and the increasing of the adhesion matters which form cake and gel layer. The resistance value of cake layer was measured $2.9{\times}10^{10}{\sim}4.0{\times}10^{10}(1/m)$, this value showed more significant effect on flux drop than that of among other resistance layers. Batch phenol-degradation experiment was conducted to observe SMP type expected $SMP_{nd}$ and $SMP_{e}$ (SMP resulted from endogenous cell decomposition), these are non-biodegradable high molecular weight organic matter and playa significant role in permeate flux drop. Also, SMP concentration was accumulated as increased of HRT against flux drop.

  • PDF