• Title/Summary/Keyword: ML-SEM

Search Result 141, Processing Time 0.028 seconds

Synthesis, Characterization and Photocatalytic Activity of Reduced Graphene Oxide-Ce/ZnO Composites

  • Zhang, Wenjun;Zhao, Jinfeng;Zou, Xuefeng
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.127-134
    • /
    • 2016
  • A series of Ce-doped ZnO (Ce/ZnO) nanostructures were fabricated using the co-precipitation method, then a simply nontoxic hydrothermal approach was proposed for preparation of reduced graphene oxide (rGO)-Ce/ZnO composites. The synthesized composites were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), electrochemical impedance spectroscopy (EIS), UV-vis diffuse reflectance spectroscopy (DRS) techniques and Raman pattern. The as-synthesized rGO-Ce/ZnO composites showed high photodecomposition efficiency in comparison with the rGO-ZnO, Ce/ZnO, pure ZnO under UV, visible-light and sunlight irradiation. The degradation of methylene blue (MB) (10 mg/L, 100ml) by 95.8% within 60 min by using rGO-2 (10 mg) under sunlight irradiation was observed. The repeated use of the rGO-2 was investigated, and the results showed almost no decay in the catalytic activity.

Visible-light photo-reduction of reduced graphene oxide by lanthanoid ion

  • Kim, Jinok;Yoo, Gwangwe;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.290.1-290.1
    • /
    • 2016
  • Grapehen, a single atomic layer of graphite, has been in the spotlight and researched in vaious fields, because its fine mechanical, electrical properties, flexibility and transparence. Synthesis methods for large-area graphene such as chemical vaper deposition (CVD) and mechanical, chemical exfoliation have been reported. In particular, chemical exfoliation method receive attention due to low cost process. Chemical exfoliation method require reduction of graphene oxide in the process of exfoliation such as chemical reduction by strong reductant, thermal reduction on high temperature, and optical reduction via ultraviolet light exposure. Among these reduction methods, optical reduction is free from damage by strong reductant and high temperature. However, optical reduction is economically infeasible because the high cost of short-wavelength ultraviolet light sorce. In this paper, we make graphene-oxide and lanthanoid ion mixture aqueous solution which has highly optical absorbency in selective wevelength region. Sequentially, we synthesize reduced graphene oxide (RGO) using the solution and visible laser beam. Concretely, graphene oxide is made by modified hummer's method and mix with 1 ml each ultraviolet ray absorbent Gd3+ ion, Green laser absorbent Tb3+ ion, Red laser absorbent Eu3+ ion. After that, we revivify graphene oxide by laser exposure of 300 ~ 800 nm layser 1mW/cm2 +. We demonstrate reproducibility and repeatability of RGO through FT-IR, UV-VIS, Low temperature PL, SEM, XPS and electrical measurement.

  • PDF

Photoluminescence Tuning of Porous Silicon by Electrochemical Etching in Mixed Electrolytes

  • Lee, Ki-Hwan;Jeon, Ki-Seok;Lee, Seung-Koo;Choi, Chang-Shik
    • Journal of Photoscience
    • /
    • v.10 no.3
    • /
    • pp.257-261
    • /
    • 2003
  • We have systematically studied the evolution of the photoluminescence(PL) tuning of porous silicon(PS) by electrochemical etching in various mixed electrolytes. The electrolytes employed as an etchants were mixtures of HF:CH$_3$COOH:HNO$_3$:C$_2$H$\_$5/OH solutions where the composition ratios (%) were varied from 10:1.98:0:88.02 to 10: 1.98:8.4:79.62 under constant concentration of HF and CH$_3$COOH with a total volume of 100 ml. Changes in the surface morphology of the samples caused by variations in the etching process were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). After samples are etched in various mixed electrolytes, FTIR analyses show that there is the non-photoluminescent state and the photoluminescent state simultaneously. The PL spectra show the PL tuning in the ranging from 560 to 700 nm with the increase of HNO$_3$ concentration. An analysis of the subsequent PL relaxation mechanism was carried out by time-correlated single photon counting (TCSPC) method. Based on experimental results, it is assumed that a red shift of the main PL peak position is related to the HNO$_3$ activated formation of silicon oxygen compounds. Therefore, the use of electrolyte mixtures with composition ratios can be obtained adequate and reproducible results for PL tuning.

  • PDF

Effect of Dispersant on the Characterization of Cu Powders Prepared with Wet-reduction Process (액상-환원법으로 합성된 Cu 분말의 특성에 미치는 분산제의 영향)

  • Kim, Yong-Yee;Kim, Tea-Wan;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.50-55
    • /
    • 2007
  • Ultra-fine Copper powder for a conductive paste in electric-electronic field have been synthesized by chemical reduction of aqueous $CuSO_4$ with hydrazine hydrate $(N_2H_4{\cdot}H_2O)$ as a reductor. The effect of reaction conditions such as dispersant and reaction temperature on the particle size and shape for the prepared Cu powders was investigated by means of XRD, SEM, TEM and TGA. Experiments showed that type of dispersant and reaction temperature were affected on the particle size and morphology of the copper powder. When the carboxymethyl cellulose (CMC) was added as a dispersant the relative mono-dispersed and spherical Cu powder was obtained. Cu powders with particle size of approximately 140nm and narrow particle size distribution were obtained from 0.3M $CuSO_4$ with adding of 0.03M CMC and 40ml $N_2H_4{\cdot}H_2O$ at a reaction temperature of $70^{\circ}C$.

Hydrogen Embrittlement of Zr-2.5Nb Pressure Tube at Room Temperature by Precipitated Hydride (수소화물에 의한 Zr-2.5Nb 압력관의 상온 수소취화 거동)

  • Oh, Dong-Joon;Boo, Myung-Hwan;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.455-463
    • /
    • 2003
  • The aim of this study is to investigate the hydrogen embrittlement of Zr-2.5Nb CANDU pressure tube at room temperature. The transverse tensile and fracture toughness tests were performed at various hydrogen concentrations using transverse tensile specimens and CCT (curved compact tension) specimens. These specimens were directly machined from the pressure tube retaining original curvatures. Based on the results of these tests. the hydrogen embrittlement phenomenon was clearly observed and fracture toughness parameters of Zr-2.5Nb pressure tube materials such as, $K_{J(0.2)}$.$J_{ML}$.dJ/da, were dramatically decreased with the increasement of the hydrogen concentration. From microscopic observation by SEM and TEM, it was also revealed that various shapes dimples, fissures and quasi-cleavage were found at the hydrogen-absorbed materials with hydrides while traditional shape dimples were generally located at the as-received materials Through the comparison of the hydride and fissure lengths with the hydrogen concentration the new evaluation method of hydrogen embrittlement was suggested.

Characteristics of Phosphate Adsorption using Prepared Magnetic Iron Oxide (MIO) by Co-precipitation Method in Water (공침법에 의해 제조된 Magnetic Iron Oxide (MIO)를 이용한 수중 인 흡착 특성)

  • Lee, Won-Hee;Chung, Jinwook;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.609-615
    • /
    • 2015
  • This study was carried out for characterization of MIO synthesized in our laboratory by co-precipitation method and applied isotherm and kinetic models for adsorption properties. XRD analysis were conducted to find crystal structure of synthesized MIO. Further SEM and XPS analysis was performed before and after phosphate adsorption, and BET analysis for surface characterization. Phosphate stock solution was prepared by KH2PO4 for characterization of phosphate adsorption, and batch experiment was conducted using 50 ml conical tube. Langmuir and Freundlich models were applied based on adsorption equilibrium test of MIO by initial phosphate solution. Pseudo first order and pseudo second order models were applied for interpretation of kinetic model by temperature. Surface area and pore size of MIO were found $89.6m^2/g$ and 16 nm respectively. And, the determination coefficient ($R^2$) value of Langmuir model was 0.9779, which was comparatively higher than that of Freundlich isotherm model 0.9340.

Photocatalytic Reactivity of Titania Deposited Beads in Continuous Reactor (광촉매 박막증착 비드의 연속식 반응기에서의 광반응성)

  • Park Jaehyeon;Lee Seung Yong;Ha Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.274-276
    • /
    • 2005
  • 본 논문에서는 유동층 화학기상증착법(FB CVB; Fluidized Bed Chemical Vapor Deposition)으로 광촉매가 박막증착된 비드를 제조하였고 제조된 광촉매코팅비드의 광반응성을 연속식 반응기에서 아세트알데히드의 분해능력을 측정하여 분석하였다. 광촉매가 박막증착된 비드의 FE-SEM 분석 결과 글라스 비드 위의 티타니아는 비교적 매끄럽게 증착되었고, 실리카 위의 티타니아는 입자의 형태로 증착되었으며 알루미나 위의 티타니아는 결정상을 이루며 증착됨을 확인 할 수 있었다. Acetaldehyde 기체의 광촉매에 의한 분해 실험을 진행하기 위해 연속식 반응기를 설계 제작하였고, 이 반응기를 사용하여 제조된 광촉매 코팅입자의 광반응성을 살펴보았다. 반응기는 가스 주입구와 출구를 갖고 있으며, 중심부에 UV 램프가 설치되었다. 반응기는 내열유리(pyrex)로 제작하였으며, 체적은 100 ml이다. 반응기 내부의 중심부에 UV 램프가 설치되고 UV 램프와 반응기 외부사이에 유동층 화학기상증착법에 의해 티타니아가 박막증착된 광촉매입자가 위치하여 광반응성을 평가하였다. 유량변화에 따른 광반응성을 측정하였으며, 알루미나에 광촉매를 증착시킨 제품의 경우 가스유량 100cc/min에서는 acetaldehyde가 $100\%$ 분해되고, 가스유량 500cc/min에서는 $50\%$정도 분해되는 것을 알 수 있었다.

  • PDF

Synthesis of solar light responsive ZnO/TaON photocatalysts and their photocatalytic activity (태양광 응답형 ZnO/TaON 나노 복합체의 제조 및 광촉매 특성 평가)

  • Kim, Tae-Ho;Jo, Yong-Hyeon;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.256-257
    • /
    • 2014
  • The effects of the preparation conditions of ZnO-modified TaON on the photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light were investigated. The ZnO/TaON nanocomposite were prepared by loading particulate $Ta_2O_5$ with ZnO using different ZnO contents, followed by thermal nitridation at 1123 K for 5 h under $NH_3$ flow (20 ml min.1). The asprepared samples were characterized by XRD, UV-Vis-DRS, and SEM-EDX. The results revealed that the band gap energy absorption edge of as prepared nanocomposite samples was shifted to a longer wavelength as compared to ZnO and $Ta_2O_5$, and the 60 wt% ZnO/TaON nanocomposite exhibited the highest percentage (99.2 %) of degradation of Rh. B and the highest reaction rate constant ($0.0137min^{-1}$) in 4 h which could be attributed to the enhanced absorption of the ZnO/TaON nanocomposite photocatalyst. Hence, these results suggest that the ZnO/TaON nanocomposite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial ZnO, $Ta_2O_5$, and TaON.

  • PDF

Synthesis and Characteristic of Ni/VSZ Cermet for High Temperature Electrolysis Prepared by Mechanical Alloying Method (Mechanical Alloying Method로 제조된 고온수전해용 Ni/YSZ cermet의 제조 및 특성)

  • Chae, Ui-Seok;Hong, Hyun-Sean;Choo, Soo-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2005
  • Ni/YSZ ($Y_2O_3$-stabilized $ZrO_2$) composite powder for a cathode material in high temperature electrolysis(HTE) was synthesized by a mechanical alloying method with Ni and YSZ powder. Microstructure of the composite and cell thickness for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. Employing the composite material, furthermore, the unit cell for HTE has been studied to evolve hydrogen from water. XRD patterns showed that the composites after wet mechanical alloying were composed of respective nano-sized crystalline Ni and YSZ. While ethanol as additive for mechanical alloying increased to $20\;{\mu}m$ of average particle size of the composites, alpha-terpineol effectively decreased to sub-micro size of that. This study has been found out the evolution of hydrogen by HTE reaction employing the fabricated cathode material, showing 1.4 ml/min of $H_2$ generation rate as increasing $20\;{\mu}m$ of cathode thickness.

Heterostructured Nanophotocatalysts for Degradation of Organophosphate Pesticides from Aqueous Streams

  • Kaur, Paramjeet;Bansal, Priti;Sud, Dhiraj
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.382-388
    • /
    • 2013
  • The present paper focuses on the synthesis, characterization and application of nanophotocatalyst for degradation of quinalphos and monocrotophos. Novel heterostructured ZnO/$TiO_2$ photocatalyst ($Z_9T$) was prepared and characterized with X-ray diffraction (XRD), SEM and UV-vis diffuses reflectance spectroscopy. The average crystalline size of synthesized $Z_9T$ was found to be 21.48 nm. The pesticides were degraded in the presence of nanophotocatalysts i.e., $TiO_2$, ZnO, $TiO_2$/ZnO mixed in various proportions and heterostructured nanophotocatalyst synthesized by Sol-Gel method. The batch experiments were performed by adding photocatalyst to 100 ml of pesticide solution and suspension was subjected to irradiation under UV light. In case of mixed catalyst, the maximum degradation of monocrotophos and quinalphos has been observed when ZnO and $TiO_2$ were in the ratio of 7:3 and 8:2 respectively. The degradation efficiency with synthesized heterostructured nanophotocatalyst ($Z_9T$) was found to be comparable with $TiO_2$.