본 논문은 iterated contractive transformations을 이용한 심전도 데이터 압축에 관한 새로운 방법을 제안한다. 이방법은 piecewise self-affine fractal interpolation(PSAFI)에 의해 심전도 신호의 임의 구간들을 표현한다. Piecewise self-affine fractal model은 자기자신의 수축적 유사 변환으로 구성된다고 볼 수 있는 이산 데이터에 사용된다. 제안된 알고리즘은 MIT/BIH arrhythmia 데이터베이스로 평가되었다. PSAFI는 주어진 압축율에서 기존의 직접 압축 방법보다 상대적으로 적은 재생 오차를 나타냈다. 샘플링 주파수는 400Hz이고 resolution은 12bits인 원래 신호에 대해 압축율이 883.9bps일때 평균재생오차(APRD)는 5.39%를 나타냈다.
In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.
심방세동(Atrial Fibrillation:AF)은 각종 심장질환에서 비교적 빈번히 발생하는 부정맥으로 알려져 있으며, 그 발병률은 연령의 증가와 더불어 점차 증가한다. 전통적으로 심방세동을 검출하는 방법은 시간 영역 분석법과 주파수 영역분석법이 대부분이었다. 하지만 심전도 신호는 잡음의 영향을 많이 받는 환경에서 검출의 정확도가 떨어지며, 시간 주파수 영역 분석법은 RR 간격에 따라 변화하는 불규칙적 리듬에 관한 정보를 정확하게 얻지 못하는 단점이 있다. 본 연구에서는 부호화와 정보 엔트로피에 기반한 AF 패턴 분석 방법을 제안한다. 이를 위해 먼저 RR 간격 데이터를 차분 분할 방식을 통해 부호 서열화 한 후 그 리듬에 대한 패턴을 분석하고 이를 샤논의 정보 엔트로피를 통해 복잡도를 정량화하여 심방세동을 검출하였다. 성능 평가를 위해 10부터 100까지의 문턱값에 따른 엔트로피를 통해 복잡도를 분석하였으며 MIT-BIH 심방세동 데이터베이스를 이용하여 실험하였다.
본 논문에서는 불응기(Refractory Period)에 기반한 부정맥 심전도 신호의 특이 파형 검출 알고리즘을 제안한다. 부정맥 심전도 신호는 대부분 평균 10% 정도의 특이 파형을 갖는다. 따라서 장시간 심전도 신호를 관찰 및 분석해야 하는 의료진에게 심전도 신호 샘플의 90%이상이 축소된 특이 파형만을 제공함으로써 시간과 비용 측면에서 매우 큰 효과를 볼 수 있다. 제안 알고리즘은 R-파의 특징과 가변 불응기를 이용하여 R-peak를 검출한다. 검출된 R-peak에 대해 특이 파형에 포함되지 않은 R-peak들의 전위 및 첨도의 평균과 표준편차를 이용하여 특이 파형을 검출한다. 제안한 알고리즘을 MIT-BIH 부정맥 데이터베이스의 모든 레코드에 적용한 결과 평균 90% 이상의 압축률을 보였다.
일반적인 부정맥 분류 방법의 경우 심방 박동 수와 관련한 PP간격, P모양의 다양성과 같은 조건을 이용하는데, 잡음으로 인해 정확한 P파의 검출이 어렵기 때문에 잡음의 영향을 비교적 적게 받는 R파를 이용하는 것이 유리하다. 따라서 본 연구에서는 R파 중심의 ECG(electrocardiography) 패턴 분석과 템플릿 문턱치를 도입하여 조기수축 부정맥 분류 방법을 제안한다. 이를 위해 형태 연산을 통한 전 처리 과정과 차감 동작 기법을 통해 R파를 검출하였다. 이후 RR 간격의 평균 가중치와 변화율을 이용하여 먼저 조기수축 파형의 패턴을 분류하고, R파의 진폭에 대한 템플릿 문턱값을 통해 조기심실수축과 조기심방수축을 분류하는 알고리즘을 개발하였다. 제안한 방법의 우수성을 입증하기 위해 조기 심방과 심실수축이 30개 이상 포함된 MIT-BIH 6개의 레코드를 대상으로 한 R파의 평균 검출율은 99.77%의 성능을 나타내었고, 조기심실수축과 심방수축 부정맥은 각각 94.91%와 95.76%의 평균 분류율을 나타내었다.
부정맥 심전도 신호는 전도장애 및 발생부위에 따라 특정 부위에서 비정상 모양을 띄는 특이심박을 포함하고 있다. 특이심박은 부정맥 등 다양한 질환을 진단 및 분류하는데 있어 유용하기 때문에 부정맥 심전도 신호에서 특이심박의 검출은 매우 중요하다. R-peak점에서의 전위, 첨도 및 R-R 간격은 심전도 신호가 R파에서 가지는 특성이다. 본 논문에서는 이를 바탕으로 특이심박 검출 방법을 제안한다. 제안한 방법은 특이심박이 확실할수록 특성값이 평균에서 크게 벗어난다는 점을 기반으로 평균과 표준편차를 이용하여 순차적으로 특이심박을 검출한다. MIT-BIH 부정맥 데이터베이스 중 R파 왜곡을 가지는 15개의 심전도 신호에 대해 기존의 고정된 문턱값을 사용한 검출 방법과 제안한 방법을 적용하여 특이심박을 검출하여 비교하였다. 실험을 통해 민감도를 약 50~70%에서 제안한 방법을 통해 97%로 크게 상향할 수 있었다.
부정맥 심전도 신호에는 전도장애 및 발생부위에 따라 다양한 비정상 모양을 띄는 특이심박들이 포함되어 있고, 이들 특이심박은 부정맥 등의 심장질환을 진단하는데 있어 매우 중요하다. 본 논문에서는 심실질환에 관련한 PVC 특이심박 검출 알고리즘을 제안한다. PVC 특이심박에서는 심전도 신호의 구성요소 가운데 QRS 군의 왜곡이 발생하는 특징이 있다. 따라서 QRS 군의 왜곡 정도에 따라 PVC 특이심박을 검출할 수 있다. 먼저 R-peak의 전위, 첨도, 주기를 사용하여 QRS 군의 왜곡을 정량화하고, 이들 값들의 평균과 표준편차를 이용하여 정상 심박과의 왜곡의 정도에 따라 PVC 특이심박을 검출한다. 제안한 알고리즘은 MIT-BIH 부정맥 데이터베이스 중 심실질환과 관계되는 AAMI-V class 타입의 특이심박을 평균 98% 이상을 검출할 수 있었다.
T파는 심장의 심실의 재분극을 나타내는 파라미터로써 부정맥 진단에 있어 매우 중요하다. T 파를 검출하기 위한 기존 연구방법으로는 주파수 분석과 비선형 접근방법 등이 제안되어 왔지만 검출 정확도가 낮다는 문제점이 있다. 이는 T파의 경우 P파와 중복되는 경우가 발생하기 때문이다. 본 연구에서는 QRS 구간을 제거한 후, 이동평균을 통한 P파와 T파의 대상 영역을 추출하여 정확히 T파를 검출하는 알고리즘을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 Q, R, S를 검출한다. 이후 검출된 QRS 구간을 제거, 이동평균을 통해 4개의 PAC 패턴과 기타부정맥에 대한 판단규칙을 적용하여 P, T파의 대상 영역을 추출하고, 이를 대상으로 RR 간격과 RT 간격의 문턱치를 적용하여 T파를 검출하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 한 T파의 평균 검출율은 95.32%의 성능을 나타내었다.
부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 퍼지(Fuzzy), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 오류 역전파 알고리즘을 이용한 부정맥 분류에 가장 많이 사용되고 있다. 딥러닝 모델을 심전도 신호에 적용하기 위해서는 적절한 모델선택과 파라미터를 최적에 가깝게 선택할 필요가 있다. 본 연구에서는 심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG신호에서 R파를 검출하고 QRS와 RR간격 세그먼트를 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 검증데이터로 모델을 평가하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 딥러닝 모델로 훈련 및 검증 정확도를 확인하였다. 성능 평가 결과 R파의 평균 검출 성능은 99.77%, PVC는 97.84의 평균 분류율을 나타내었다.
본 논문에서는 심전도 신호로부터 부정맥을 진단하는 방법으로 심박수 변이도와 퍼지 신경망을 이용하는 방안을 제시하고 있다. 제안한 부정맥 진단 알고리즘은 32개 RR 간격의 심박수 변이도, 즉 평균 25초 내외의 심박수 변화를 이용하여 부정맥을 진단하는 알고리즘이다. 부정맥 진단 알고리즘은 32개 RR 간격을 이용하여, 통계적 특징 6개를 추출한 후, 가중 퍼지소속함수 기반 신경망으로 학습하여 정상 구간과 부정맥 구간을 분류한다. 부정맥 진단 알고리즘은 Tsipouras 논문군(48개 레코드)에서 SE와 SP 각각 80% 이하의 성능을 보이는 기존연구와는 달리, SE는 88.75%, SP는 82.28%, 전체 분류율은 86.31%의 신뢰성 있는 결과를 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.