• 제목/요약/키워드: MIT-BIH arrhythmia

검색결과 86건 처리시간 0.033초

Holter Data 압축 알고리즘에 관한 연구 -Piecewise Self-Affine Fractal Model을 이용한- (A Study on the Holter Data Compression Algorithm -Using Piecewise Self-Affine Fractal Model-)

  • 전영일;정형만
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.17-24
    • /
    • 1995
  • 본 논문은 iterated contractive transformations을 이용한 심전도 데이터 압축에 관한 새로운 방법을 제안한다. 이방법은 piecewise self-affine fractal interpolation(PSAFI)에 의해 심전도 신호의 임의 구간들을 표현한다. Piecewise self-affine fractal model은 자기자신의 수축적 유사 변환으로 구성된다고 볼 수 있는 이산 데이터에 사용된다. 제안된 알고리즘은 MIT/BIH arrhythmia 데이터베이스로 평가되었다. PSAFI는 주어진 압축율에서 기존의 직접 압축 방법보다 상대적으로 적은 재생 오차를 나타냈다. 샘플링 주파수는 400Hz이고 resolution은 12bits인 원래 신호에 대해 압축율이 883.9bps일때 평균재생오차(APRD)는 5.39%를 나타냈다.

  • PDF

웨이브렛과 신경망 기반의 심실 세동 검출 알고리즘에 관한 연구 (A Study on the Detection of the Ventricular Fibrillation based on Wavelet Transform and Artificial Neural Network)

  • 송미혜;박호동;이경중;박광리
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권11호
    • /
    • pp.780-785
    • /
    • 2004
  • In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.

부호화와 정보 엔트로피에 기반한 심방세동 (Atrial Fibrillation: AF) 패턴 분석 (Atrial Fibrillation Pattern Analysis based on Symbolization and Information Entropy)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.1047-1054
    • /
    • 2012
  • 심방세동(Atrial Fibrillation:AF)은 각종 심장질환에서 비교적 빈번히 발생하는 부정맥으로 알려져 있으며, 그 발병률은 연령의 증가와 더불어 점차 증가한다. 전통적으로 심방세동을 검출하는 방법은 시간 영역 분석법과 주파수 영역분석법이 대부분이었다. 하지만 심전도 신호는 잡음의 영향을 많이 받는 환경에서 검출의 정확도가 떨어지며, 시간 주파수 영역 분석법은 RR 간격에 따라 변화하는 불규칙적 리듬에 관한 정보를 정확하게 얻지 못하는 단점이 있다. 본 연구에서는 부호화와 정보 엔트로피에 기반한 AF 패턴 분석 방법을 제안한다. 이를 위해 먼저 RR 간격 데이터를 차분 분할 방식을 통해 부호 서열화 한 후 그 리듬에 대한 패턴을 분석하고 이를 샤논의 정보 엔트로피를 통해 복잡도를 정량화하여 심방세동을 검출하였다. 성능 평가를 위해 10부터 100까지의 문턱값에 따른 엔트로피를 통해 복잡도를 분석하였으며 MIT-BIH 심방세동 데이터베이스를 이용하여 실험하였다.

부정맥 심전도 신호에서 특이 파형 검출 (Unusual Waveform Detection Algorithm in Arrhythmia ECG Signal)

  • 박길흠;김진섭;류춘하;최병재;김정준
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.292-297
    • /
    • 2013
  • 본 논문에서는 불응기(Refractory Period)에 기반한 부정맥 심전도 신호의 특이 파형 검출 알고리즘을 제안한다. 부정맥 심전도 신호는 대부분 평균 10% 정도의 특이 파형을 갖는다. 따라서 장시간 심전도 신호를 관찰 및 분석해야 하는 의료진에게 심전도 신호 샘플의 90%이상이 축소된 특이 파형만을 제공함으로써 시간과 비용 측면에서 매우 큰 효과를 볼 수 있다. 제안 알고리즘은 R-파의 특징과 가변 불응기를 이용하여 R-peak를 검출한다. 검출된 R-peak에 대해 특이 파형에 포함되지 않은 R-peak들의 전위 및 첨도의 평균과 표준편차를 이용하여 특이 파형을 검출한다. 제안한 알고리즘을 MIT-BIH 부정맥 데이터베이스의 모든 레코드에 적용한 결과 평균 90% 이상의 압축률을 보였다.

ECG 패턴 분석과 템플릿 문턱값을 통한 조기수축 부정맥분류 (Premature Contraction Arrhythmia Classification through ECG Pattern Analysis and Template Threshold)

  • 조익성;조영창;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.437-444
    • /
    • 2016
  • 일반적인 부정맥 분류 방법의 경우 심방 박동 수와 관련한 PP간격, P모양의 다양성과 같은 조건을 이용하는데, 잡음으로 인해 정확한 P파의 검출이 어렵기 때문에 잡음의 영향을 비교적 적게 받는 R파를 이용하는 것이 유리하다. 따라서 본 연구에서는 R파 중심의 ECG(electrocardiography) 패턴 분석과 템플릿 문턱치를 도입하여 조기수축 부정맥 분류 방법을 제안한다. 이를 위해 형태 연산을 통한 전 처리 과정과 차감 동작 기법을 통해 R파를 검출하였다. 이후 RR 간격의 평균 가중치와 변화율을 이용하여 먼저 조기수축 파형의 패턴을 분류하고, R파의 진폭에 대한 템플릿 문턱값을 통해 조기심실수축과 조기심방수축을 분류하는 알고리즘을 개발하였다. 제안한 방법의 우수성을 입증하기 위해 조기 심방과 심실수축이 30개 이상 포함된 MIT-BIH 6개의 레코드를 대상으로 한 R파의 평균 검출율은 99.77%의 성능을 나타내었고, 조기심실수축과 심방수축 부정맥은 각각 94.91%와 95.76%의 평균 분류율을 나타내었다.

심전도 신호에서 R파 왜곡에 따른 적응적 특이심박 검출 (Adaptive Detection of Unusual Heartbeat According to R-wave Distortion on ECG Signal)

  • 이승민;류춘하;박길흠
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.200-207
    • /
    • 2014
  • 부정맥 심전도 신호는 전도장애 및 발생부위에 따라 특정 부위에서 비정상 모양을 띄는 특이심박을 포함하고 있다. 특이심박은 부정맥 등 다양한 질환을 진단 및 분류하는데 있어 유용하기 때문에 부정맥 심전도 신호에서 특이심박의 검출은 매우 중요하다. R-peak점에서의 전위, 첨도 및 R-R 간격은 심전도 신호가 R파에서 가지는 특성이다. 본 논문에서는 이를 바탕으로 특이심박 검출 방법을 제안한다. 제안한 방법은 특이심박이 확실할수록 특성값이 평균에서 크게 벗어난다는 점을 기반으로 평균과 표준편차를 이용하여 순차적으로 특이심박을 검출한다. MIT-BIH 부정맥 데이터베이스 중 R파 왜곡을 가지는 15개의 심전도 신호에 대해 기존의 고정된 문턱값을 사용한 검출 방법과 제안한 방법을 적용하여 특이심박을 검출하여 비교하였다. 실험을 통해 민감도를 약 50~70%에서 제안한 방법을 통해 97%로 크게 상향할 수 있었다.

심전도 신호에서 QRS 군의 왜곡에 기반한 PVC 검출 (PVC Detection Based on the Distortion of QRS Complex on ECG Signal)

  • 이승민;김진섭;박길흠
    • 한국통신학회논문지
    • /
    • 제40권4호
    • /
    • pp.731-739
    • /
    • 2015
  • 부정맥 심전도 신호에는 전도장애 및 발생부위에 따라 다양한 비정상 모양을 띄는 특이심박들이 포함되어 있고, 이들 특이심박은 부정맥 등의 심장질환을 진단하는데 있어 매우 중요하다. 본 논문에서는 심실질환에 관련한 PVC 특이심박 검출 알고리즘을 제안한다. PVC 특이심박에서는 심전도 신호의 구성요소 가운데 QRS 군의 왜곡이 발생하는 특징이 있다. 따라서 QRS 군의 왜곡 정도에 따라 PVC 특이심박을 검출할 수 있다. 먼저 R-peak의 전위, 첨도, 주기를 사용하여 QRS 군의 왜곡을 정량화하고, 이들 값들의 평균과 표준편차를 이용하여 정상 심박과의 왜곡의 정도에 따라 PVC 특이심박을 검출한다. 제안한 알고리즘은 MIT-BIH 부정맥 데이터베이스 중 심실질환과 관계되는 AAMI-V class 타입의 특이심박을 평균 98% 이상을 검출할 수 있었다.

QRS구간 제거와 이동평균을 통한 대상 영역 추출 기반의 T파 검출 알고리즘 (T Wave Detection Algorithm based on Target Area Extraction through QRS Cancellation and Moving Average)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.450-460
    • /
    • 2017
  • T파는 심장의 심실의 재분극을 나타내는 파라미터로써 부정맥 진단에 있어 매우 중요하다. T 파를 검출하기 위한 기존 연구방법으로는 주파수 분석과 비선형 접근방법 등이 제안되어 왔지만 검출 정확도가 낮다는 문제점이 있다. 이는 T파의 경우 P파와 중복되는 경우가 발생하기 때문이다. 본 연구에서는 QRS 구간을 제거한 후, 이동평균을 통한 P파와 T파의 대상 영역을 추출하여 정확히 T파를 검출하는 알고리즘을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 Q, R, S를 검출한다. 이후 검출된 QRS 구간을 제거, 이동평균을 통해 4개의 PAC 패턴과 기타부정맥에 대한 판단규칙을 적용하여 P, T파의 대상 영역을 추출하고, 이를 대상으로 RR 간격과 RT 간격의 문턱치를 적용하여 T파를 검출하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 한 T파의 평균 검출율은 95.32%의 성능을 나타내었다.

심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 (Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1542-1550
    • /
    • 2019
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 퍼지(Fuzzy), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 오류 역전파 알고리즘을 이용한 부정맥 분류에 가장 많이 사용되고 있다. 딥러닝 모델을 심전도 신호에 적용하기 위해서는 적절한 모델선택과 파라미터를 최적에 가깝게 선택할 필요가 있다. 본 연구에서는 심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG신호에서 R파를 검출하고 QRS와 RR간격 세그먼트를 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 검증데이터로 모델을 평가하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 딥러닝 모델로 훈련 및 검증 정확도를 확인하였다. 성능 평가 결과 R파의 평균 검출 성능은 99.77%, PVC는 97.84의 평균 분류율을 나타내었다.

심박수 변이도와 퍼지 신경망을 이용한 부정맥 추출 (Detection of Arrhythmia Using Heart Rate Variability and A Fuzzy Neural Network)

  • 장형종;임준식
    • 인터넷정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.107-116
    • /
    • 2009
  • 본 논문에서는 심전도 신호로부터 부정맥을 진단하는 방법으로 심박수 변이도와 퍼지 신경망을 이용하는 방안을 제시하고 있다. 제안한 부정맥 진단 알고리즘은 32개 RR 간격의 심박수 변이도, 즉 평균 25초 내외의 심박수 변화를 이용하여 부정맥을 진단하는 알고리즘이다. 부정맥 진단 알고리즘은 32개 RR 간격을 이용하여, 통계적 특징 6개를 추출한 후, 가중 퍼지소속함수 기반 신경망으로 학습하여 정상 구간과 부정맥 구간을 분류한다. 부정맥 진단 알고리즘은 Tsipouras 논문군(48개 레코드)에서 SE와 SP 각각 80% 이하의 성능을 보이는 기존연구와는 달리, SE는 88.75%, SP는 82.28%, 전체 분류율은 86.31%의 신뢰성 있는 결과를 나타낸다.

  • PDF