• Title/Summary/Keyword: MINs

Search Result 352, Processing Time 0.019 seconds

STUDIES ON THE UTILIZATION OF ANTARCTIC KRILL 2. Processing of Paste Food, Protein Concentrate, Seasoned Dried Product, Powdered Seasoning, Meat Ball, and Snack (남대양산 크릴의 이용에 관한 연구)

  • PARK Yeung-Ho;LEE Eung-Ho;LEE Kang-Ho;PYEUN Jae-Hyeung;KIM Se-Kweun;KIM Dong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.65-80
    • /
    • 1980
  • Processing conditions of the krill products such as paste food, krill protein concentrate, seasoned dried krill, powdered seasoning, meat ball, and snack have been examined and the quality was evaluated chemically and organoleptically. In the processing of paste food, krill juice was yielded $71\%$ and krill scrap $29\%$. The yields of paste and broth from the krill juice showed $53\%$ and $43\%$, respectively. In amino acid composition of the krill paste, proline, glutamic acid, aspartic acid, lysine, and leucine were abundant, while histidine, methionine, tyrosine, serine and threonine were poor. The optimum condition for solvent extraction in the processing of krill protein concentrate was the 5 times repetitive extraction using isopropyl alcohol at $80^{\circ}C$ for 5 mins. The yield of krill protein concentrate when used fresh frozen materials was $10.2\%$ in isopropyl alcohol solvent and $8.8\% in ethyl alcohol, and when used preboiled frozen materials, the yield was $13.0\%$ in isopropyl alcohol and $11.8\%$ in ethyl alcohol. Amino acid composition of krill protein concentrate showed a resemblance to that of fresh frozen krill meat. In quality comparison of the seasoned dried krill, hot air dried krill was excellent as raw materials and sun dried krill was slightly inferior to hot air dried krill, but preboiled frozen krill showed the poorest quality. The result of quality evaluation for seasoning made by combination of dried powdered krill, parched powdered sesame, salt, powdered beef extract, monosodium glutamate, powdered red pepper and ground pepper showed that the hot air dried krill was good in color and sundried krill was favorable in flavor. When krill meat ball was prepared using wheat flour, monosodium glutamate and salt as side materials, the quality of the products added up to $52\%$ of krill meat was good and the difference in quality upon the results of the organoleptic test for raw materials was not recognizable between fresh frozen and preboiled frozen krill. In the experiment for determining the proper amount of materials such as dried Powdered krill, $\alpha-starch$, sweet potato starch, sugar, salt, monosodium glutamate, glycine, potassium tartarate, ammonium bicarbonate, and sodium bicarbonate in processing krill snack, sample B(containing $7.7\%$ of dried powdered krill) and sampleC (containing $10.8\%$ of dried powdered krill) showed the most palatable taste from the view point of organoleptic test. Sweet potato starch in testing side materials was good in the comparison of suitability for processing krill snack. Corn starch and kudzu starch were slightly inferior to sweet potato starch, while wheat flour was not proper for processing the snack. In the experiment on frying method, oil frying showed better effect than salt frying and the suitable range of frying temperature was $210-215^{\circ}C$.

  • PDF

Studies on the replacement of raw materials for caramel coloring. - The effects of syrups and catalysts on the properties of Caramel coloring - (Caramel 색소(色素)의 원료대체(原料代替)에 관(關)한 연구(硏究) - 당액(糖液) 및 촉매(觸媒)의 종류(種類)가 Caramel의 성상(性狀)에 미치는 영향(影響) -)

  • Kim, S.Y.;Chang, K.S.
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.1
    • /
    • pp.105-119
    • /
    • 1976
  • Sucrose, glucose, starches hydrolyzates and raw starchy materials hydrolyzates were caramelized using various catalysis and the caramel products were analysed, in order to carry out the basic research for the replacement of caramel coloring. The results obtained were summarized as follows. 1. The caramel which was manufactured by sucrose syrup being pH 3.5 adjusted by sulfuric acid showed strong color intensity and hue as well as good stability in the solutions of table salt, tannin and alcohol. 2. The product caramelized from sucrose syrup being pH 9.5 adjusted by sodium carbonate showed very strong color intensity and black color component, and was quite stable in alcohol solution but not in table salt and tannin solutions. 3. The caramel products made from sucrose syrup using ammonium salts of strong acid like $NH_4Cl$ and $(NH_4)_2SO_4$ as catalyst showed strong color intensity and black color component but hazy apparence in solution of table salt, tannin and alcohol. 4. The product caramelized from glucose syrup being pH 9.5 adjusted by sodium carbonate indicated strong color intensity but weak red color component and was transparent in solution of table salt and alcohol but hazy in tannin solution. 5. In glucose caramel using $NH_4Cl$, $(NH_4)_2SO_4$, $(NH_4)_2CO_3$ and $(NH_4)_2SO_3$ as catalyst, $NH_4Cl$ plot was very weak in color intensity and insufficient in red color component but stable in solution of table salt, tannin and alcohol. In the case of $(NH_4)_2CO_3$, $(NH_4)_2SO_4$ and $(NH_4)_2SO_3$ plots, all products were strong in color intensity but little insufficient in red color component. On the stability in solutions, $(NH_4)_2SO_3$ plot was stable in two solutions expect tannin solution, $(NH_4)_2CO_3$ plot was only stable in alcohol solution and $(NH_4)_2SO_3$ plot was only stable in table salt solution. 6. When the acid hydrolyzed starch syrups without neutralization were caramelized using $(NH_4)_2SO_4$ as catalyst, the potato starch hydrolyzate caramel showed higher in color intensity being similar to its of glucose caramel than sweet potato starch hydrolyzate caramel and corn starch hydrolyzate caramel. 7. Dried sweet potato powder, dried acorns powders, the acorns (from Q. serrata THUNB and Q. acutissima CARR.) powders extracted with water for 7 days and with 50% alcohol solution for 24 hrs were hydrolyzed by sulfuric acid in autoclave at $3.5kg/cm^2$ as pressure for 60 mins, and were caramelized using $(NH_4)_2SO_4$ as catalyst. It was supposed that all of those products were poor quality on color and stability in solutions at the viewpoint of food coloring matter.

  • PDF