• Title/Summary/Keyword: MINTEQ model

Search Result 5, Processing Time 0.026 seconds

Explanation of the Effect of Limestone on the Dissolution of a Phosphate with the Visual MINTEQ Model (Visual MINTEQ모델을 이용한 인산염의 용해에 미치는 석회석의 영향 규명)

  • Kim, Hag Seong;Jeong, Yeon Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.285-290
    • /
    • 2008
  • This study was done to explain the role of limestone which might intervene in the phosphorus cycle in a lake. The effects of limestone on the dissolution of phosphate were estimated by simulations with the computer model Visual MINTEQ, which is designed for the chemical equilibrium calculations. According to the calculations limestone shows remarkable effects for the suppression of phosphate dissolution. The limestone can suppress the dissolution of phosphates by sacrificing themselves to acids, and as a consequence can increase the hardness and alkalinity of the lake. Both hardness and alkalinity play an important role in reducing soluble P and thus alleviate the eutrophication potential.

Effects of Alkalinity and Hardness on the Chlorophyll-α Concentration (알칼리도와 경도가 클로로필-α 농도에 미치는 영향)

  • Kim, Sungok;Kim, Hag Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • This study is done to prove the premise that both alkalinity and hardness affect on the dissolved phosphorus concentration so that the growth of algae is also affected in water bodies like rivers and lakes. Statistical analysis of the water quality data of 13 reservoirs collected for the last decade shows the relations between alkalinity and chlorophyll-${\alpha}$ and between hardness and chlorophyll-${\alpha}$ are not linear but follow second order equation. This relation seems to be due to two antagonistic effects accompanying a simultaneous increase in alkalinity and hardness. The increase stimulates the growth of algae by supplying carbonates and $Ca^{2+}$ to algae and at same time it causes a decrease in soluble phosphorus which retards algae to grow. These opposing tendencies are confirmed by theoretical calculations with the MINTEQ model. There seems to be ranges of alkalinity and hardness that are in favor of algae growth; the ranges are less than 44 mg/L as $CaCO_3$ in alkalinity and also less than 63 mg/L as $CaCO_3$ in hardness. This finding will provide a solid base to develop an effective water quality management of water bodies.

Removal of Fluoride Ions from Electronic Industrial Wastewater Using Lime Stone Slurry (초미분말 석회석 현탁액을 이용한 전자산업 폐수 불소이온 제거연구)

  • Park, Hyeon Soo;Park, Yeon Soo;Jung, Goo Ill;Kim, Jae Woo;Jo, Young Min
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.258-263
    • /
    • 2018
  • This study attempted to utilize ultrafine precipitated calcium carbonate for fluoride removal from the wastewater of electronics industries. An average particle size of the calcium carbonate was $0.96{\mu}m$, and pH of the aqueous slurry was 10 with 70% in mass. The suspension solution showed approximately 2 mL/hr of the sedimentation rate. The present calcium carbonate solution could be comparable to the conventional aqueous calcium source, $Ca(OH)_2$, for the neutralization and removal of fluoride ions. Depending on the amount of an additional alkali source, less amounts of test Ca-source slurries were required to reach the solution pH of 7.0 than that of using the aqueous calcium hydroxide. It was also found from XRD analysis that more calcium fluoride precipitates were formed by the addition of calcium carbonate solution rather than that of calcium hydroxide. In addition, Minteq equilibrium modelling estimated various ion complexes of fluoride and calcium in this process.

Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles

  • Safavi, Banafshe;Asadollahfardi, Gholamreza;Darban, Ahmad khodadadi
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • One of the methods of removing cyanide from wastewater is surface adsorption. We simulated the removal of cyanide from a synthetic wastewater in the presence of Titanium dioxide nano-particles absorbent uses VISUAL MINTEQ 3.1 software. Our aim was to determine the factors affecting the adsorption of cyanide from synthetic wastewater applying simulation. Synthetic wastewater with a concentration of 100 mg/l of potassium cyanide was used for simulation. The amount of titanium dioxide was 1 g/l under the temperature of $25^{\circ}C$. The simulation was performed using an adsorption model of Freundlich and constant capacitance model. The results of simulation indicated that three factors including pH, nanoparticles of titanium dioxide and the primary concentration of cyanide affect the adsorption level of cyanide. The simulation and experimental results had a good agreement. Also by increasing the pH level of adsorption increases 11 units and then almost did not change. An increase in cyanide concentration, the adsorption level was decreased. In simulation process, rising the concentrations of titanium dioxide nanoparticles to 1 g/l, the rate of adsorption was increased and afterward no any change was observed. In all cases, the coefficient of determination between the experimental data and simulation data was above 0.9.

Selection of Chemicals for the Dissolved Phosphorus Control by Variations of Alkalinity and Hardness (용존인 제어를 위한 알칼리도와 경도 조절제의 선택)

  • Kim, Sungok;Kim, Hag Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.206-211
    • /
    • 2014
  • This study was done to find chemicals adequate to control alkalinity and hardness in order to reduce dissolved phosphorus in water bodies like rivers and lakes. Five chemicals were selected for the study: calcite, lime, dolomite, magnesite, and gypsum. Data were obtained from the calculations with MINTEQ model as a function of dosage variations of each chemical. Findings are as follows: Three out of the five chemicals are found to be effective in reducing the dissolved phosphorus, i.e., calcite, lime, and dolomite. Calcite and dolomite are able to lower the phosphorus concentration up to one thousandth fold whereas lime does one hundred thousandths fold. In viewpoint of pH variation, both calcite and dolomite seem to be safe since the pH does not increase over 8.3 even in case of overdose. In the same circumstance, with lime the pH increases beyond 9 which is considered to be the highest pH level for the protection of water ecosystem. Nevertheless it is recommendable to use lime in case where there are some difficulties in water quality control due to algae blooms.