• Title/Summary/Keyword: MINITAB Model

Search Result 25, Processing Time 0.025 seconds

Implementation and Features for Design of Experiment (품질실험계획 모형의 특징 및 적용방안)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.519-524
    • /
    • 2010
  • The research presents implementation strategy and features for experimental design of quality. The MINITAB models of experimental design classfies by the kinds of factors, orthogonality, blocking, confounding and rotationability. The results discussed in this paper can be easily used for practictioners.

  • PDF

The Study for NHPP Software Reliability Growth Model Based on Hyper-exponential Distribution (초지수분포(Hyper-exponential)를 이용한 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the hyper-exponential distribution reliability model, which maked out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method. For model determination and selection, explored goodness of fit (the error sum of squares). The methodology developed in this paper is exemplified with a software reliability random data set introduced by of Weibull distribution (shape 0.1 & scale 1) of Minitab (version 14) statistical package.

  • PDF

Analysis for Response of Launcher System with Continuous Impact Load (연속충격을 고려한 발사대 반응특성 해석)

  • Lim, O-Kaung;Yoo, Wan-Suk;Choi, Eun-Ho;Ryu, Jae-Bong;Lee, Chang-Hoon;Kim, Sang-Geun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.718-723
    • /
    • 2007
  • A three dimensional multibody modeling of a launcher system was developed and dynamic characteristics of the system was carried out. All the components were modeled as rigid bodies, All the components of system, ie; chassis, turret, cage and suspension parts, are modeled as rigid. The force interaction between the ground and tire was modeled as a point contact model. The factors were selected as cause and effect diagram of the MINITAB. To see effect of the stiffness, damping, mass at the launcher system, several cases of suspension parameters were compared and optimal values were selected. The stiffness and the damping coefficient were selected as design variables to minimize the required time for the next fire. The dynamic simulation was carried out using the ADAMS, and the MINITAB was employed for data analysis.

  • PDF

The NHPP Bayesian Software Reliability Model Using Latent Variables (잠재변수를 이용한 NHPP 베이지안 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.117-126
    • /
    • 2006
  • Bayesian inference and model selection method for software reliability growth models are studied. Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. In this paper, could avoid multiple integration using Gibbs sampling, which is a kind of Markov Chain Monte Carlo method to compute the posterior distribution. Bayesian inference for general order statistics models in software reliability with diffuse prior information and model selection method are studied. For model determination and selection, explored goodness of fit (the error sum of squares), trend tests. The methodology developed in this paper is exemplified with a software reliability random data set introduced by of Weibull distribution(shape 2 & scale 5) of Minitab (version 14) statistical package.

  • PDF

Optimization of Process Parameters of Incremental Sheet Forming of Al3004 Sheet Using Genetic Algorithm-BP Neural Network (유전 알고리즘-BP신경망을 이용한 Al3004 판재 점진성형 공정변수에 대한 최적화 연구)

  • Yang, Sen;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.560-567
    • /
    • 2020
  • Incremental Sheet Forming (ISF) is a unique sheet-forming technique. The process is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. In the forming process, the critical parameters affecting the formability of sheet materials are the tool diameter, step depth, feed rate, spindle speed, etc. This study examined the effects of these parameters on the formability in the forming of the varying wall angle conical frustum model for a pure Al3004 sheet with 1mm in thickness. Using Minitab software based on Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA), a second order mathematical prediction model was established to predict and optimize the wall angle. The results showed that the maximum forming angle was 87.071° and the best combination of these parameters to give the best performance of the experiment is as follows: tool diameter of 6mm, spindle speed of 180rpm, step depth of 0.4mm, and feed rate of 772mm/min.

Optimal Design of Smart Panel using Taguchi Method (다구찌법을 이용한 스마트 판넬의 최적 설계)

  • Zhao, Lijie;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.188-191
    • /
    • 2005
  • Taguchi method is used to determine the optimal configuration of PZT (Lead Zirconate-Titanate) patch on the host structure for improving the performance of piezoelectric shunt system. The charges generated on the surface of PZT patch are selected to be the objective function in the Taguchi method. Full three dimensional finite element models are used to simulate vibration of smart panel and to obtain the admittance of the piezoelectric shunt system. Using Taguchi method in Minitab, the optimal model is obtained. The experiment with piezoelectric shunt circuit is performed to verify the validity of the optimal model comparing with initial model.

  • PDF

A study on Analysis of Contact erosion at a Magnetic Contactor with the Use of Regression Analysis (회귀분석을 이용한 전자접촉기의 접점소모 분석에 대한 고찰)

  • Klm, Myoung-Seok;Ryu, Haeng-Su;Han, Gyu-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.116-118
    • /
    • 2003
  • This paper describes a Accelerated Life Test (ALT) with the electrical contact erosion suitable to the evaluations of high-reliability and durability devices such as magnetic contactor. Recently, an electrical devices company was interested in accelerated life test (ALT), the product liability (PL) and the short-term testing model of electrical life test (ELT). In order to estimate a model for testing fee and period, need to the statistical analysis method with the acceleration factor(AF). Usually customer/manufacturer regard their device failure to the over-current or heavy duty condition, while devices view shape of contact erosion owing to operational duty problem. In this paper, additional method of evaluation estimated the operated cycles by weight of contact erosion with a used of regression analysis by MINITAB.

  • PDF

Comparative Study on Statistical Packages for Analyzing Logistic Regression - MINITAB, SAS, SPSS, STATA -

  • Kim, Soon-Kwi;Jeong, Dong-Bin;Park, Young-Sool
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.367-378
    • /
    • 2004
  • Recently logistic regression is popular in a variety of fields so that a number of statistical packages are developed for analyzing the logistic regression. This paper briefly considers the several types of logistic regression models used depending on different types of data. In addition, when four statistical packages (MINTAB, SAS, SPSS and STATA) are used to apply logistic regression models to the real fields respectively, their scope and characteristics are investigated.

  • PDF

Reliability Analysis Using Field-Data of 5.56 mm Rifle (야전운용제원을 이용한 5.56 mm 소총 신뢰도 분석)

  • Shin, Tae-Sung;Seo, Hyun-Soo;Lee, Ho-Jun;Choi, Si-Young;Gil, Hyeon-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.584-591
    • /
    • 2020
  • Reliability is an important factor in weapons systems. Low reliability causes the weapons system to fail to function properly, which directly leads to the weakening of combat capability. This paper classifies the structure of the 5.56 mm rifle, which is currently used by the Korean army, into a total of seven assemblies and describes the eight functions necessary for the rifle to operate normally. In addition, the concept of reliability was defined as the MRBF, and the Poisson process model and TTT plot were explained as a reliability analysis theory for the repair function system. Next, the field-data obtained by defining failure as the replacement of parts other than periodic exchange of parts were refined, and the reliability was analyzed by entering the refined field operation specifications into the Minitab program. As a result, the reliability of the rifle was determined to be 251.73. The assembly parts that required improvement was identified as the barrel, lower body, and butt stock assembly, and 10 detailed parts needed to be improved. Finally, the limits of the reliability analysis using the field-data currently available for small caliber firearms were considered.

An Application of Design of Experiments for Optimization of MOF-235 Synthesis for Acetylene Adsorption Process (아세틸렌 흡착공정용 MOF-235 합성 최적화를 위한 실험 계획법 적용)

  • Cho, Hyungmin;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.377-382
    • /
    • 2020
  • A sequential design of experiments was employed to optimize MOF-235 synthesis for acetylene adsorption process. Two experimental designs were applied: a two-level factorial design for screening and a central composite design, one of response surface methodologies (RSM). In this study, 23 factorial design of experiment was used to evaluate the effect of parameters of synthesis temperature and time, and also mixing speed on crystallinity of MOF-235. Experiments were conducted 16 times follwing MINITAB 19 design software for MOF-235 synthesis. Half-normal, pareto, residual, main and interaction effects were drawn based on the XRD results. The analysis of variance (ANOVA) of test results depicts that the synthesis temperature and time have significant effects on the crystallinity of MOF-235 (response variable). After screening, a central composite design was performed to optimize the acetylene adsorption capacity of MOF-235 based on synthesis conditions. From nine runs designed by MINITAB 19, the result was calculated using the second order model equation. It was estimated that the maximum adsorption capacity (18.7 mmol/g) was observed for MOF-235 synthesized at optimum conditions of 86.3 ℃ and 28.7 h.