• Title/Summary/Keyword: MIMO precoding

Search Result 117, Processing Time 0.03 seconds

Individual Channel Estimation Based on Blind Interference Cancellation for Two-Way MIMO Relay Networks

  • He, Xianwen;Dou, Gaoqi;Gao, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3589-3605
    • /
    • 2018
  • In this paper, we investigate an individual channel estimation problem for multiple-input multiple-output (MIMO) two-way amplify-and-forward (AF) relay networks. To avoid self-interference during the estimation of the individual MIMO channels, a novel blind interference cancellation (BIC) approach is proposed based on an orthogonal preceding framework, where a pair of orthogonal precoding matrices is utilized at the source nodes. By designing an optimal decoding scheme, we propose to decompose the bidirectional transmission into a pair of unidirectional transmissions. Unlike most existing approaches, we make the practical assumption that the nonreciprocal MIMO channel and the mutual interference of multiple antennas are both taken into consideration. Under the precoding framework, we employ an orthogonal superimposed training strategy to obtain the individual MIMO channels. However, the AF strategy causes the noise at the terminal to be the sum of the local noise and the relay-propagated noise. To remove the relay-propagated noise during the estimation of the second-hop channel, a partial noise-nulling method is designed. We also derive a closed-form expression for the total mean square error (MSE) of the MIMO channel from which we compute the optimal power allocation. The simulation results demonstrate that the analytical and simulated curves match fully.

On Achievable Information Rates for Multiuser MIMO Systems with MMSE-Based Tomlinson-Harashima Precoding

  • Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.750-755
    • /
    • 2009
  • Tomlinson-Harashima precoding (THP) is considered as a prominent precoding scheme due to its capability to cancel out the known interference at the transmitter side. Therefore, the information rates achieved by THP are superior to those achieved by conventional linear precoding schemes. In this paper, a new lower bound on the achievable information rate by the regularized THP under additive white Gaussian noise (AWGN) channel with multiuser interference is derived. Analytical results show that the lower bound derived in this paper is tighter than the original lower bound particularly at low SNR range, while both lower bounds converge to the same lower limit as SNR$\rightarrow$$\infty$.

Hybrid Precoder Design for Massive MIMO Systems with OSA structure (부분 중첩 안테나 배열 구조를 갖는 대용량 MIMO 시스템을 위한 하이브리드 프리코더 설계)

  • Seo, Bangwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.274-279
    • /
    • 2021
  • Since conventional massive antenna systems require too many RF chains, they have disadvantages of high implementation cost and complexity. To overcome this problem, hybrid precoding schemes have been proposed. But, they are still of high implementation cost and complexity because RF chains are connected to all antenna elements. In this paper, we consider massive MIMO systems with overlapped sub-array (OSA) structure and then, propose a hybrid precoding scheme. In the overlapped subarray structure, RF analog precoding matrix has a sparse structure where many elements of RF analog precoding matrix are zeros. Using this sparse property, we propose a GTP-based precoder design method for RF and baseband digital precoding. Through simulation, we show that the proposed scheme has more than 85% of the spectral efficiency of the fully-connected structure while having 20~30% of complexity of it.

A Near Optimal Linear Preceding for Multiuser MIMO Throughput Maximization (다중 안테나 다중 사용자 환경에서 최대 전송율에 근접하는 선형 precoding 기법)

  • Jang, Seung-Hun;Yang, Jang-Hoon;Jang, Kyu-Hwan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.414-423
    • /
    • 2009
  • This paper considers a linear precoding scheme that achieves near optimal sum rate. While the minimum mean square error (MMSE) precoding provides the better MSE performance at all signal-to-noise ratio (SNR) than the zero forcing (ZF) precoding, its sum rate shows superior performance to ZF precoding at low SNR but inferior performance to ZF precoding at high SNR, From this observation, we first propose a near optimal linear precoding scheme in terms of sum rate. The resulting precoding scheme regularizes ZF precoding to maximize the sum rate, resulting in better sum rate performance than both ZF precoding and MMSE precoding at all SNR ranges. To find regularization parameters, we propose a simple algorithm such that locally maximal sum rate is achieved. As a low complexity alternative, we also propose a simple power re-allocation scheme in the conventional regularized channel inversion scheme. Finally, the proposed scheme is tested under the presence of channel estimation error. By simulation, we show that the proposed scheme can maintain the performance gain in the presence of channel estimation error and is robust to the channel estimation error.

MIMO Techniques for Green Radio Guaranteeing QoS

  • Nicolaou, Marios;Han, Congzheng;Beh, Kian Chung;Armour, Simon;Doufexi, Angela
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.130-139
    • /
    • 2010
  • Environmental issues and the need to reduce energy consumption for lowering operating costs have pushed power efficiency to become one of the major issues of current research in the field of wireless networks. This paper addresses a number of multiple input multiple output (MIMO) precoding and scheduling techniques across the PHY and MAC layers that can operate under a reduced link budget and collectively improve the transmit power efficiency of a base station, while maintaining the same levels of service. Different MIMO transmission and precoding schemes proposed for LTE, achieving varying degrees of multiuser diversity in both the time, frequency as well as the space domain, are examined. Several fairness-aware resource allocation algorithms are applied to the considered MIMO schemes and a detailed analysis of the tradeoffs between power efficiency and quality of service is presented. This paper explicitly examines the performance of a system serving real-time, VoIP traffic under different traffic loading conditions and transmit power levels. It is demonstrated that by use of efficient scheduling and resource allocation techniques significant savings in terms of consumed energy can be achieved, without compromising QoS.

Near-Optimal Low-Complexity Hybrid Precoding for THz Massive MIMO Systems

  • Yuke Sun;Aihua Zhang;Hao Yang;Di Tian;Haowen Xia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1042-1058
    • /
    • 2024
  • Terahertz (THz) communication is becoming a key technology for future 6G wireless networks because of its ultra-wide band. However, the implementation of THz communication systems confronts formidable challenges, notably beam splitting effects and high computational complexity associated with them. Our primary objective is to design a hybrid precoder that minimizes the Euclidean distance from the fully digital precoder. The analog precoding part adopts the delay-phase alternating minimization (DP-AltMin) algorithm, which divides the analog precoder into phase shifters and time delayers. This effectively addresses the beam splitting effects within THz communication by incorporating time delays. The traditional digital precoding solution, however, needs matrix inversion in THz massive multiple-input multiple-output (MIMO) communication systems, resulting in significant computational complexity and complicating the design of the analog precoder. To address this issue, we exploit the characteristics of THz massive MIMO communication systems and construct the digital precoder as a product of scale factors and semi-unitary matrices. We utilize Schatten norm and Hölder's inequality to create semi-unitary matrices after initializing the scale factors depending on the power allocation. Finally, the analog precoder and digital precoder are alternately optimized to obtain the ultimate hybrid precoding scheme. Extensive numerical simulations have demonstrated that our proposed algorithm outperforms existing methods in mitigating the beam splitting issue, improving system performance, and exhibiting lower complexity. Furthermore, our approach exhibits a more favorable alignment with practical application requirements, underlying its practicality and efficiency.

Study on 2×2 MIMO Detection in ATSC 3.0 Systems (ATSC 3.0 시스템에서 2×2 MIMO 검출에 대한 연구)

  • Lee, Woon Hyun;Kim, Jeongchang;Park, Sung Ik;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.755-764
    • /
    • 2017
  • In this paper, we design transmitter and receiver structures for a $2{\times}2$ multiple-input multiple-output (MIMO) in ATSC 3.0 systems and analyze the performance of the $2{\times}2$ MIMO system. In the ATSC 3.0 MIMO systems, spatial diversity and multiplexing gains can be obtained using the spatial demultiplexer and precoder. In this paper, we present the structures of the transmitter and receiver for ATSC 3.0 MIMO systems. Also, we present performance results of the $2{\times}2$ MIMO system through computer simulations.

3-User Dirty Paper Precoding (세 명의 다중 사용자 채널에서의 더티 페이퍼 전처리 코딩)

  • Lee, Moon-Ho;Park, Ju-Yong;Shin, Tae-Chol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • In this paper, we design on nonliner 3 user Dirty Paper Precoding for MIMO adjacant interference signal cancellation based on 3 GPP LTE Release 10. In this paper, in order to reduce the inter-channel interference at the transmitted side, we propose the Dirty Paper Precoding scheme for 3-user MIMO wireless systems using LQ decomposition and Gram-Schmidt algorithm based in its orthonormal basis.

Lattice Reduction Aided Preceding Based on Seysen's Algorithm for Multiuser MIMO Systems (다중 사용자 MIMO 시스템을 위한 Seysen 알고리즘 기반 Lattice Reduction Aided 프리코팅)

  • An, Hong-Sun;Mohaisen, Manar;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.915-921
    • /
    • 2009
  • Lenstra-Lenstra-Lovasz (LLL) algorithm, which is one of the lattice reduction (LR) techniques, has been extensively used to obtain better bases of the channel matrix. In this paper, we jointly apply Seysen's lattice reduction Algorithm (SA), instead of LLL, with the conventional linear precoding algorithms. Since SA obtains more orthogonal lattice bases compared to those obtained by LLL, lattice reduction aided (LRA) precoding based on SA algorithm outperforms the LRA precoding with LLL. Simulation results demonstrate that a gain of 0.5dB at target BER of $10^{-5}$ is achieved when SA is used instead of LLL or the LR stage.

Design and Performance Analysis of a Communication System with AMC and MIMO Mode Selection Scheme (AMC와 MIMO 선택 기법이 결합된 통신 시스템의 설계 및 성능 분석)

  • Lee, Jeong-Hwan;Yoon, Gil-Sang;Cho, In-Sik;Seo, Chang-Woo;Portugal, Sherlie;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.22-30
    • /
    • 2010
  • This paper proposes a combination system of Adaptive Modulation and Coding (AMC) and Multiple Input Multiple Output (MIMO), which improves the throughput and has a better reliability. In addition, the system includes Precoding, Antenna Subset Selection and MIMO Mode Selection scheme. Finally, we make a performance analysis of the proposed system. The principal environmental parameters for the simulation experiment consist of a frequency non-selective rayleigh fading channel and a Spreading Factor (SF) of 16. Other parameters may be included in order to fulfill the requirements of the HSDP A Standard. The proposed system has a higher throughput and more reliability than the conventional system, which does not include MIMO Mode Selection scheme, Precoding or Antenna Subset Selection. According to the simulation results, the proposed system reaches the maximum throughput at 8dB, presentlng an improvement of 6dB and twice higher throughput, respect to the conventional system. Specifically, at the point of -6dB, the conventional system reaches 2.5Mbps, while the proposed system reaches 6.4Mbps at the same SNR. Also, at the point of 2dB, each system reaches 7.5Mbps (conventional system) and 15.3Mbps (proposed system), with near twice the difference. According to the results exposed above, we can conclude that the system proposed in this paper has, as the greatest contribution, the improvement of the throughput, especially, the average throughput.