• Title/Summary/Keyword: MIMO SM

Search Result 51, Processing Time 0.019 seconds

Performance Analysis of MlMO-OFDMA System Combined with Adaptive Beamforming (다중 입출력과 적응형 빔형성 기술 결합기법을 적용한 직교주파수분할 다중 접속시스템의 성능 분석)

  • Chung, Jae-Ho;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.86-92
    • /
    • 2011
  • This paper details the downlink performance analysis of an multiple antennas system that combines adaptive beamforming and spatial multiplexing (SM) Multiple Input Multiple Output (MIMO). The combination of MIMO signal processing with adaptive beamforming is applied to WiBro, the South Korean Orthogonal Frequency Division Multiple Access (OFDMA) system that follows the IEEE 802.16e standard. Performance analysis is based on the results of experiments and simulations obtained from a fixed-point simulation testbed. Simulations demonstrate that the MIMO Beamforming OFDMA system improves the required signal to noise ratio (SNR) over the conventional MIMO OFDMA system by 3 dB (QPSK) / 2.5 dB (16-QAM) for the frame error rate (FER) of 1% in the WiBro signal environments. From the implementation of the fixed-point simulation testbed and its experimental results, we verify the feasibility of the MIMO Beamforming technology for realizing a practical WiBro base station.

Spatial Multiplexing Using Open-Loop Precoding in Maritime Communication Environment with Channel Correlation and LOS (채널 상관 및 직접파가 존재하는 해상 통신 환경에서 개루프 프리코딩 기반의 공간다중화 전송 기법)

  • Jang, Jungyup;Lee, Seong Ro;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1397-1404
    • /
    • 2015
  • Recently, high data rate transmission is required in maritime communication. In this paper, we consider multiple input multiple output (MIMO) spatial multiplexing (SM). However, the performance of SM is severly degraded due to spatial channel correlation and line-of-sight (LOS) component. In the maritime communication, the MIMO channel correlation and LOS are critical due to the lack of scatteres around the transmitter and/or the receiver. When the feedback of channel information is available, precoding can enhance the error performance by exploiting the channel information. However, it is difficult to derive closed-form solution considering both the correlation and LOS. In this paper, we present open-loop precoding-based spatial multiplexing transmission method by showing that the effect of performance for the correlation and LOS. It is shown that the open-loop precoding can mitigate the performance degradation due to the LOS as well as the correlation. Consequently, we expect that the proposed open-loop precoding can be adopted to the maritime communication system.

Rotated-symbol Generalized Spatial Modulation

  • Muchena, Nishal;Murtala, Sheriff;Holoubi, Tasnim;Mohaisen, Manar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.34-40
    • /
    • 2019
  • In spatial modulation (SM), both the signal symbol and spatial symbol, i.e., the index of the antenna from which signal symbol is transmitted, carry information. To increase the number of bits carried by spatial symbols, more transmit antennas are required. In the generalized SM (GSM), the same signal symbol is transmitted from a combination of antennas, resulting in a reduction in the number of antennas required to achieve a given spectral efficiency. In this paper, we propose a rotated-symbol GSM (RGSM), in which the signal symbol is rotated with an angle corresponding to the position of the antenna index within the combination. This increases the number of spatial symbols by a factor equivalent to the length of the antenna combinations of the GSM. Numerically, SM, GSM and RGSM require 128, 17 and 12 transmit antennas to convey seven bits through the spatial symbols. Simulation results show that RGSM performs relatively close to GSM, and in several system settings, their error performances coincide.

Transmit Antenna Selection Technique Based on Channel Capacity for Spatial Modulation Systems (공간변조 시스템에서 채널 용량 기반 송신 안테나 선택 기술)

  • Yim, Han Young;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2521-2526
    • /
    • 2013
  • In this paper, a novel spatial modulation (SM) with transmit antenna selection (TAS) based on maximizing channel capacity is proposed. Comparing to the conventional TAS technique, the proposed TAS considers the channel capacity of the MIMO channel with antenna selection. The optimal antenna set selection is applied to SM by taking account of the all possible sets, and then, a sub-optimal antenna set selection is also proposed for reducing the computational complexity of the optimal method. Computer simulations show that the proposed TAS significantly outperforms the existing SM scheme based on the magnitude of the channel vectors in terms of bit error rate (BER) in various environments.

A Signal Detection Method for Uplink Multiuser Systems Based on Collaborative Spatial Multiplexing (협력적 공간다중화 기반 상향링크 다중사용자 시스템을 위한 신호검출 기법)

  • Im, Tae-Ho;Kim, Yeong-Jun;Jung, Jae-Hoon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.229-237
    • /
    • 2010
  • The conventional detection methods developed for spatially-multiplexed MIMO systems such as OSIC and QRD-M show performance difference for each user depending on the order of detection when they are applied to detection of multi-user signals in uplink multiuser systems based on collaborative spatial multiplexing. In this paper, a signal detection method for uplink multiuser systems based on collaborative spatial multiplexing is proposed to provide similar performance for each user while its performance is close to the case of ML detection. Compared with QRD-M method, computational complexity of the proposed signal detection method is similar in the case of QPSK, and significantly lower in the case of high modulation order with 16-QAM and 64-QAM.

Feedback Scheme for STBC-Spatial Multiplexing OFDM System with outdated channel feedback (지연된 귀환 채널 정보를 가지는 STBC-공간다중화 OFDM 시스템을 위한 귀환 기법)

  • Lim Jong-Kyoung;Hwang Hyeon-Chyeol;Seo Myoung-Seok;Kwak Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.31-38
    • /
    • 2006
  • In this paper, we propose an efficient preceding scheme for STBC-Spatial Muiltiplexing OFDM systems. In MIMO systems, the precoder is designed on the assumption that feedback channel information is perfectly known to transmitter and receiver. However, feedback delay and link errors in real environment make the transmitter use the incorrect channel information and consequently cause the performance degradation. The proposed precoder is designed to compensate for the performance degradation by the diversity gain provided by STBC. At the transmitter, the precoder for each subcarrier is constructed by using the index of codebook, subcarrier correlation, and auto correlation of channel. From the simulation results, STBC-spatial multiplexing OFDM outperforms the preceded-spatial multiplexing OFDM at $SER=10^{-3}$ when the Doppler frequency is greater than 60Hz.

Signal Detection Using Ordered Successive Interference Cancellation for Generalized Spatial Modulation Systems

  • Kim, Youngbeom;Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, an improved ordered block minimum mean squared error (OB-MMSE) detector for generalized spatial modulation (GSM) systems is presented. It is based on an ordered successive interference cancellation (OSIC) technique. Its bit error rate (BER) performance and computational complexity are compared with those of the corresponding original OB-MMSE detector. It is shown that the proposed OSIC-based OB-MMSE detector outperforms the OB-MMSE detector in terms of BER without noticeable complexity increase.

Antenna Selection and Shuffling for DSTTD Systems with Correlated Transmit-Antenna (송신 안테나 사이에 상관관계가 있는 DSTTD 시스템에서 안테나 선택과 뒤섞는 기법)

  • Joung, Jin-Gon;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.767-774
    • /
    • 2007
  • A new transmit antenna selection and shuffling($AS^2$) method for spatially correlated double space time transmit diversity(DSTTD) systems is proposed. The proposed method allows dumb antennas and the superposition of multiple signals at the same transmit antenna, whereas the conventional methods consider the antenna shuffling(AS) only. According to the simulation result, the proposed method provides a 1.8 dB signal-to-noise ratio(SNR) gain over the conventional methods for spatially correlated transmit antennas. Although the number of candidates for $AS^2$ is much higher than that of AS, it is found that the number of candidates for $AS^2$ can be reduced to 36 by using the characteristics and properties of preprocessing matrices, and among them, only 6 candidates are almost always chosen. Next, we empirically compare the bit-error-rate (BER) performance of the proposed method with the conventional spatial multiplexing(SM) technique with antenna selection. Simulation results show that the proposed method outperforms the SM technique.

Spectral and Energy Efficient Spatially Modulated Non-Orthogonal Multiple Access (NOMA) For 5G (5G를 위한 주파수 및 에너지 효율적인 공간 변조 비-직교 다중 접속 기법)

  • Irfan, Mohammad;Kim, Jin Woo;Shin, Soo Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1507-1514
    • /
    • 2015
  • Non-orthogonal multiple access (NOMA) is a promising candidate for 5G networks. NOMA achieves superior spectral efficiency than conventional orthogonal multiple access (OMA), as in NOMA multiple users uses the same time and frequency resources. Multiple-input-multiple-output (MIMO) is one another promising technique that can enhance system performance. In this paper we present a spectral and energy efficient multiple antenna based NOMA scheme, known as spatially modulated NOMA. In the proposed scheme the cell edge users are multiplexed in spatial domain, which means the information to cell edge users is conveyed using the transmit antenna indices. In NOMA the performance of cell edge users are deeply effected as it treats signals of others as noise. The proposed scheme achieves superior spectral efficiency than the conventional NOMA. The number of decoding steps involved in decoding NOMA signal reduces by one as cell edge user is multiplexed in spatial domain. The proposed scheme is more energy efficient as compare to conventional NOMA. All of the three gains high spectral, energy efficiency and one step reduction in decoding comes at cost of multiple transmit antennas at base station.

Novel Soft Decision Generation Technique for Performance Improvement of 3GPP LTE-Advanced Systems with Multiple Antennas (다중 안테나를 사용하는 3GPP LTE-Advanced 시스템의 성능향상을 위한 새로운 연판정 값 생성방식)

  • Park, Jaeyoung;Kim, Jaekwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6838-6844
    • /
    • 2014
  • 3GPP LTE-Advanced systems adopt multiple antennas for high speed data transmission. In general, the receiver complexity of a spatially mutiplexed (SM) multiple-input multiple-output (MIMO) system grows in proportion to the number of candidate vectors. A large number of candidate vectors increases the reliability of the soft output values. The maximum likelihood (ML) signal detection with a large number of candidate vectors achieves high performance. On the other hand, low complexity receiver techniques with a small number of candidate vectors provide soft output values, such as low reliability. This paper addresses the improving reliability of the soft output obtained from a small number of candidate vectors. The improved performance of the proposed technique with the aid of computer simulations is reported.