• Title/Summary/Keyword: MIMO Detection

Search Result 202, Processing Time 0.02 seconds

Linear Detection Method Based on Semi-Definite Relaxation of 16-QAM in MIMO Systems (MIMO 시스템에서 16-QAM의 Semi-Definite Relaxation에 기반을 둔 선형 검출 기법)

  • Lee, Ki-Jun;Byun, Youn-Shik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.700-705
    • /
    • 2012
  • This paper suggests the detecting method in which it uses the candidate symbol obtained through PI-SDR, the little computational complexity is required. By using the candidate symbol matrices obtained through PI-SDR, ZF and MMSE method was applied and the received signal was detected. The linear detecting method using PI-SDR candidate symbol is out of the performance than ML detecting method but the complexity is low. Because of using the symbol come close to the solution of ML, the proposed method's performance is better than the existing ZF and MMSE method.

The Mutual Information for Bit-Linear Linear-Dispersion Codes (BLLD 부호의 Mutual Information)

  • Jin, Xiang-Lan;Yang, Jae-Dong;Song, Kyoung-Young;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.958-964
    • /
    • 2007
  • In this paper, we derive the relationship between the bit error probability (BEP) of maximum a posteriori (MAP) bit detection and the bit minimum mean square error (MMSE), that is, the BEP is greater than a quarter of the bit USE and less than a half of the bit MMSE. By using this result, the lower and upper bounds of the derivative of the mutual information are derived from the BEP and the lower and upper bounds are easily obtained in the multiple-input multiple-output (MIMO) communication systems with the bit-linear linear-dispersion (BLLD) codes in the Gaussian channel.

Performance Evaluation of a Cellular OFDM System with Heterogeneous MIMO Users (이질적인 MIMO 사용자들을 가진 셀룰러 OFDM 시스템의 성능 분석)

  • Oh Joon;Hwang Hyeon chyeol;Lim Jong kyoung;Kim Duk kyung;Kwak Kyung sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.296-303
    • /
    • 2005
  • In this paper, we evaluate system performance and propose signal separation and detection when a user with one antenna shares the co-channel together with a user with two space-time coded antennas. The proposed technique can identify co-channel users by an interference cancellation method and detect the signals by maximum likelihood method. Simulation results show that the shortcoming of the Minimum Mean-Squared Error technique which can be applied two users with the same number of antenna but can not applied for heterogeneous MIMO users with the different number of antennas. Also, we apply the proposed scheme to OFDM system and evaluate the system performance. By simulations, we identify that the performance of the proposed system is the same as that of the existing single antenna users and improves the performance of the two-antenna MIMO users.

Block-Mode Lattice Reduction for Low-Complexity MIMO Detection

  • Choi, Kwon-Hue;Kim, Han-Nah;Kim, Soo-Young;Kim, Young-Il
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.110-113
    • /
    • 2012
  • We propose a very-low-complexity lattice-reduction (LR) algorithm for multi-input multi-output detection in time-varying channels. The proposed scheme reduces the complexity by performing LR in a block-wise manner. The proposed scheme takes advantage of the temporal correlation of the channel matrices in a block and its impact on the lattice transformation matrices during the LR process. From this, the proposed scheme can skip a number of redundant LR processes for consecutive channel matrices and performs a single LR in a block. As the Doppler frequency decreases, the complexity reduction efficiency becomes more significant.

A Joint Channel Estimation and Data Detection for a MIMO Wireless Communication System via Sphere Decoding

  • Patil, Gajanan R.;Kokate, Vishwanath K.
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1029-1042
    • /
    • 2017
  • A joint channel estimation and data detection technique for a multiple input multiple output (MIMO) wireless communication system is proposed. It combines the least square (LS) training based channel estimation (TBCE) scheme with sphere decoding. In this new approach, channel estimation is enhanced with the help of blind symbols, which are selected based on their correctness. The correctness is determined via sphere decoding. The performance of the new scheme is studied through simulation in terms of the bit error rate (BER). The results show that the proposed channel estimation has comparable performance and better computational complexity over the existing semi-blind channel estimation (SBCE) method.

Low Complexity ML Detection Based on Linear Detectors in MIMO Systems

  • Niyizamwiyitira, Christine;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.506-509
    • /
    • 2009
  • This paper studies about reducing the complexity of ML detection in MIMO/V-blast system, based on MMSE and ZF linear detectors. Beforehand, the receiver detects the signal using the linear detector such as ZF or MMSE. Moreover, the next step is to assess whether the signal is reliable or not by verifying the reliability condition, if the latter is reliable then it is the output if not it has to be detected by the advanced detector until the reliability condition is verified.

  • PDF

Low-Complexity Lattice Reduction Aided MIMO Detectors Using Look-Up Table (Look-Up Table 기반의 복잡도가 낮은 Lattice Reduction MIMO 검출기)

  • Lee, Chung-Won;Lee, Ho-Kyoung;Heo, Seo-Weon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.88-94
    • /
    • 2009
  • We propose a scheme which reduce the computational complexity of the lattice reduction (LR) aided detector in MIMO system. The performance of the ML detection algorithm is good but the computational complexity grows exponentially with the number of antenna elements and constellation points. LR aided detector shows the same diversity with the ML scheme with relatively less complexity. But the LR scheme still requires many computations since it involves several iterations of size reduction and column vector exchange. We notice that the LR process depends not on the received signal but only on the channel matrix so we can apply LR process offline and store the results in Look-Up Table (LUT). In this paper we propose an algorithm to generate the LUT which require less memory requirement and we evaluate the performance and complexity of the proposed system. We show that the proposed system requires less computational complexity with similar detection performance compared with the conventional LR aided detector.

Path Metric Comparison-based Adaptive QRD-M Algorithm for MUHO Systems (Path Metric 비교 기반 적응형 QRD-M MIMO 검출 기법)

  • Kim, Bong-Seok;Kim, Han-Nah;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.487-497
    • /
    • 2008
  • This paper proposes a new adaptive QRD-M algorithm for MIMO systems. The proposed scheme controls the number of survivor paths,0 based on the channel condition at each layer. The original QRD-M algorithm used fixed M at each layer and it needs large M to achieve near-MLD (maximum-likelihood detection) performance. However, using the large M increases the computation complexity. In this paper, we further effectively control M by employing the channel indicator which includes not only the channel gain, but also instantaneous noise information without necessity of SNR measurement. We found that the ratio of the minimum path metric to the second minimum is good reliability indicator for the channel condition. By adaptively changing M based on this ratio, the proposed scheme effectively achieves near MLD performance and computation complexity of the proposed scheme is significantly smaller than the conventional QRD-M algorithms.

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.

Covariance Matrix Synthesis Using Maximum Ratio Combining in Coherent MIMO Radar with Frequency Diversity

  • Jeon, Hyeonmu;Chung, Yongseek;Chung, Wonzoo;Kim, Jongmann;Yang, Hoongee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.445-450
    • /
    • 2018
  • Reliable detection and parameter estimation of a radar cross section(RCS) fluctuating target have been known as a difficult task. To reduce the effect of RCS fluctuation, various diversity techniques have been considered. This paper presents a new method for synthesizing a covariance matrix applicable to a coherent multi-input multi-output(MIMO) radar with frequency diversity. It is achieved by efficiently combining covariance matrices corresponding to different carrier frequencies such that the signal-to-noise ratio(SNR) in the combined covariance matrix is maximized. The value of a synthesized covariance matrix is assessed by examining the phase curves of its entries and the improvement on direction of arrival(DOA) estimation.