• Title/Summary/Keyword: MIMO Antenna

Search Result 444, Processing Time 0.03 seconds

A High-Isolation MIMO Antenna with Dual-Port Structure for 5G Mobile Phones

  • Yang, Hyung-kyu;Lee, Won-Woo;Rhee, Byung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1458-1470
    • /
    • 2018
  • In this letter, a new dual-port Multiple-Input Multiple-Output (MIMO) antenna is introduced which has two independent signal feeding ports in a single antenna element to achieve smaller antenna volumes for the 5G mobile applications. The dual-port structure is implemented by adding a cross coupled semi-loop (CCSL) antenna as the secondary radiator to the ground short of inverted-F antenna (IFA). It is found that the port to port isolation is not deteriorated when an IFA and CCSL is combined to form a dual-port structure. The isolation property of the proposed antenna is compared with a polarization diversity based dual-port antenna proposed in the literature [9]. The operating frequency range is 3.3-4.0 GHz which is suitable for places where $4{\times}4$ MIMO systems are supposed to be deployed such as in China, EU, Korea and Japan at the band ${\times}$ (3.3 - 3.8GHz. The measured 6-dB impedance bandwidths of the proposed antennas are larger than 700 MHz with isolation between the feeding ports higher than 18 dB [1-2]. The simulation and measurement results show that the proposed antenna concept is a very promising alternative for 5G mobile applications.

Hybrid MIMO Antenna Using Interconnection Tie for Eight-Band Mobile Handsets

  • Lee, Wonhee;Park, Mingil;Son, Taeho
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.185-193
    • /
    • 2015
  • In this paper, a hybrid multiple input multiple output (MIMO) antenna for eight-band mobile handsets is designed and implemented. For the MIMO antenna, two hybrid antennas are laid symmetrically and connected by an interconnection tie, thereby enabling complementary operation. The tie affects both the impedance and radiation characteristics of each antenna. Further, printed circuit board (PCB) embedded type is applied to the antenna design. To verify the results of this study, we designed eight bands-LTE class 12, 13, and 14, CDMA, GSM900, DCS1800, PCS, and WCDMA-and implemented them on a bare board the same size as the real board of a handset. The voltage standing wave ratio (VSWR) is within 3:1 over the entire design band. Antenna isolation is less than -15 dB at the lower band, and -12 dB at the WCDMA band. Envelope correlation coefficient (ECC) of 0.0002-0.05 is obtained for all bands. The average gain and efficiency are measured to range from -4.69 dBi to -2.88 dBi and 33.99% to 51.5% for antenna 1, and -4.74 dBi to -2.97 dBi and 33.45% to 50.49% for antenna 2, respectively.

Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel Through Staggered Antenna Switching (엇갈린 안테나 스위칭을 통한 K- 사용자 다중 셀 MIMO 채널의 조인트 간섭 정렬 및 전력 할당)

  • Kim, Jeong-Su;Lee, Moon-Ho;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.33-48
    • /
    • 2018
  • In this paper, we characterise the joint interference alignment and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with a blind interference alignment through staggered antenna switching on the receiver. We explore the power allocation and the feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired and interference signals to cancel the common interference signals, since the received signal must have a corresponding independent signal subspace. The sum capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised.

Design of a Compact MIMO Antenna for Smart Glasses (스마트 안경용 초소형 MIMO 안테나 설계)

  • Choi, Sehwan;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.351-354
    • /
    • 2017
  • In this paper, a compact MIMO(Multiple Input Multiple Output) antenna for smart glasses is proposed. The proposed MIMO antenna is designed using T-shaped isolator inserted between two closely located Inverted-F Antenna(IFA) and using two slots located in the ground for isolation enhancement and impedance matching characteristic. The proposed antenna has only the overall dimensions of $35mm{\times}9mm{\times}0.8mm$ and operates in the 2.4 GHz industrial, scientific, and medical(ISM) band. To verify human body effect, the phantom is used for antenna performance. The measured specific absorption rate(SAR) value is 1.38 W/kg with an input power of 18 dBm. The performance of the proposed antenna is compared with that of previous works for verification.

Optimal Design of a UWB-MIMO Antenna with a Wide Band Isolation using ES Algorithm (진화 전략 기법을 이용한 광대역 격리형 UWB-MIMO 안테나 최적설계)

  • Han, Jun-Hee;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1661-1666
    • /
    • 2014
  • In this paper, a compact planar ultra wideband (UWB, 3.1~10.6GHz) multiple-input multiple-output (MIMO) antenna is proposed. This antenna consists of two monopole planar UWB antennas and T-shaped stub decoupling between two antennas. The T-shaped stub improve the isolation characteristic at the wide band. The evolution strategy(ES) algorithm is employed to optimized design. As a result, optimized antenna has a return loss less than -10dB and the isolation less than -15dB from 3.1GHz to 10.6GHz. During the optimization process, the antenna gain is enhanced at lower band and the envelope correlation coefficient(ECC) is lower than 0.003.

Design of Dual-Band MIMO Antenna with High Isolation for WLAN Mobile Terminal

  • Lee, Jung-Nam;Lee, Kwang-Chun;Park, Nam-Hoon;Park, Jong-Kweon
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.177-187
    • /
    • 2013
  • In this paper, we propose a dual-band multiple-input multiple-output (MIMO) antenna with high isolation for WLAN applications (2.45 GHz and 5.2 GHz). The proposed antenna is composed of a mobile communication terminal board, eight radiators, a coaxial feed line, and slots for isolation. The measured -10 dB impedance bandwidths are 10.1% (2.35 GHz to 2.6 GHz) and 3.85% (5.1 GHz to 5.3 GHz) at each frequency band. The proposed four-element MIMO antenna has an isolation of better than 35 dB at 2.45 GHz and 45 dB at 5.2 GHz between each element. The antenna gain is 3.2 dBi at 2.45 GHz and 4.2 dBi at 5.2 GHz.

Link-level Performance Verification of the Multiple Antenna Systems - MIMO OFDM vs. Smart Antenna OFDM (OFDM 기반 다중 안테나 시스템의 링크레벨 성능검증 - MIMO OFDM vs. Smart Antenna OFDM)

  • Park Sung-Ho;Kim Kyoo-Hyun;Heo Joo;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.563-574
    • /
    • 2006
  • This paper implements SCM(Spatial Channel Model), a kind of ray-tracing method which has characteristics similar to realistic wave propagation environments, for link-level performance analysis of OFDM(Orthogonal Frequency Division Multiplexing) based multiple antenna systems. The SCM is proposed by 3GPP & 3GPP2 Spatial Channel AHG(Ad-hoc Group) for system-level performance validation. In this paper, we modify the system level parameters and channel coefficient of SCM to compare the link-level performances of OFDM based multiple antenna systems. Through computer simulations, we manifest the implemented SCM channel characteristics. We analyze a realistic link-level performance of OFDM based conventional MIMO(Multiple Input Multiple Output) system and smart antenna system in the implemented channel. We also include the link-level performance of OFDM based multiple antenna systems in I-METRA(Intelligent Multi Element Transmit and Receive Antenna) and independent channel environments with the same system parameters. We suggest appropriate multiple antenna system in the given environment by comparing the link-level performance in the spatial channels that have different channel correlation values.

Study on the applicability of MIMO Joint Decoding to Dual-Contact Satellite Systems (이중 교신 위성 시스템의 MIMO 공동 복조의 적용성에 대한 연구)

  • Park, Hong Won;Kim, Whan Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.856-867
    • /
    • 2018
  • This paper presents the applicability of MIMO joint decoding to dual-contact satellite systems in which two LEO satellites using X-band frequency band are transmitting each image data to two ground station antennas, simultaneously. When two satellites are closely positioned within the looking angle of the two antennas, each satellite interferes with each other by the relative antenna gain corresponding to an offset angle and this might cause the performance degradation without interference mitigation. To mitigate the performance degradation, SM MIMO techniques for joint decoding are applied. Especially, the relative antenna gain of ground station depending on the angle difference between two satellites in ground station antenna plays an important role in modelling the dual-contact satellite systems. The condition number of MIMO channel including the antenna gain calculated from the mathematical gain pattern model was primarily analyzed. Simulation results showed that the SM MIMO techniques using detection schemes such as ZF-SIC, MMSE-SIC, and ML can be applicable to dual-contact satellite systems.

Design of Headset MIMO Antenna for On-Body Application (인체부착형 Headset MIMO 안테나 설계)

  • Kim, Sung-Jin;Kim, Dong-Ho;Kwon, Kyeol;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1107-1115
    • /
    • 2011
  • In this paper, a headset multiple-input multiple-output(MIMO) antenna for on-body application is proposed and the antenna performance with body effect and the impact on human body are investigated. The proposed MIMO antenna is composed of two planar inverted-F antennas(PIFA) above ground plane and an isolator located between the two antennas enhance the isolation characteristic. Simulation was carried to analyze the effect of human body on antenna performance when a human body is located in the near field of the antenna. According to the measurement result, the diversity performance of the proposed antenna can be considered good since ECC(Envelope Correlation Coefficient), which commonly indicates the performance of a MIMO antenna, remains below 0.1 over the ISM band. The measured SAR values for antennas 1 and 2 are 0.575 W/kg and 0.571 W/kg, respectively when 250 mW input power in engaged. These values satisfy the FCC guideline which states that the 1-g average SAR should be lower than 1.6 W/kg.

The Improvement of Performance and Structure of the MIMO-UWB System Based on Indoor Channel Modeling (실내 채널 모델링에 기반한 MIMO-UWB 시스템의 구조 및 성능 개선)

  • Kim, Su-Nam;Jung, Hee-Seok;Jung, Kyeong-Hoon;Kim, Ki-Doo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.88-95
    • /
    • 2007
  • In this paper, we suggest the novel MIMO-UWB transceiver structure which can easily be adapted for various MIMO schemes and presents MIMO channel model for obtaining correlation characteristics among channels to analyze the performance. From the indoor channel modeling, we obtain the interferences among antennas due to the MIMO channel formation through numerical simulation and analyze the performance of MIMO-UWB system under frequency selective fading. Especially, to reduce the excessive computational complexity due to the inverse matrix computation of channel transfer function, we take the scheme combining the transmitting signals estimated from each receiving antenna after recovering each transmitting antenna signal from a receiving antenna.