• Title/Summary/Keyword: MIL-DTL-27422

Search Result 16, Processing Time 0.021 seconds

Analysis of Crash Load in Crash Impact Test for Fuel Tank of Rotorcraft (항공기용 연료탱크 Phase I 충돌충격시험 충격하중 분석)

  • Kim, Hyun-gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3736-3741
    • /
    • 2015
  • Crash impact test is conducted to verify the crashworthiness of fuel tank. Success of the crash impact test means the improvement of survivability of crews by preventing post-crash fire. But, there is a big risk of failure due to huge external load in the crash impact test. The failure of crash impact test can result in serious delay of a entire rotorcraft development because of the design complement and re-production of the test specimens requiring a long-term preparation. Thus, the numerical simulations of the crash impact test has been required at the early design stage to minimize the possibility of trial-and-error in the real test. Present study conducts on the numerical simulation of phase I crash impact test using SPH supported by crash simulation software, LS-DYNA. Test condition of MIL-DTL-27422 is reflected on analysis and material data is acquired by specimen test of fuel cell material. As a result, the crash load on the skin material, overlap area and metal fitting is estimated to confirm the possibility of acquisition of the design load for the determination of the overlap area and adhesive strength.

Assessment of Structural Soundness and Joint Load of the Rotorcraft External Fuel Tank by Sloshing Movement (슬로싱 운동에 의한 회전익항공기 외부연료탱크 체결부 하중 및 구조건전성 평가)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.605-611
    • /
    • 2019
  • The fuel sloshing due to the rapid manoeuvre of the aircraft causes significant loads on internal components, which may break components or piping. In particular, a significant load is applied to the joint of the external fuel tank by sloshing movement, which may affect the safety of the aircraft when the joint of the external fuel tank is damaged. Therefore, in order to improve the survivability of aircraft and crew members, the design of external fuel tanks, and joints should be performed after evaluating the sloshing load through a numerical analysis of the fuel sloshing conditions. In this paper, a numerical analysis was performed on the sloshing test of the external fuel tank for rotorcraft. ALE (Arbitrary Lagrangian Eulerian) technique was used, and the test conditions specified in the U.S. Military Specification (MIL-DTL-27422D) was applied as the conditions for numerical analysis. As a result of the numerical analysis, the load on the joint of the external fuel tank was calculated. Moreover, the effects of sloshing movement on structural soundness were assessed through analysis of stress levels and margin of safety on metal fittings and composite containers.

Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft (회전익항공기용 연료셀 피탄 수치모사 연구)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.405-411
    • /
    • 2012
  • Inside a rotorcraft fuel cell, pipes and components are located for fuel storage and fuel supply into the engine. Utility helicopters, operated in battle fields, fly at lower altitude compared to fixed-wing aircraft and hence are more likely to be exposed to gunfire. Since internal pressure of fluid increases when hit, the effect on LRU due to increase in pressure must taken into account when designing the aircraft for survivability. However, it is costly and time consuming to manufacture a fuel cell for gunfire test, and due to constraints from usage of live ammunition, related data gathered through numerical simulation is needed. In this study, numerical simulation on rotorcraft fuel cell exposed to gunfire was carried out using Autodyn to analyze bullet movement inside the fuel cell after hit, and internal pressure of fluid and equivalent stress on fuel cell assessed.

Study on the Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank based on ALE (ALE 기반 외부 보조연료탱크 충돌충격시험 수치해석 연구)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • A fluid-structure interaction analysis should be performed to evaluate the behavior of the internal fuel and its influence in order to confirm the structural soundness of the fuel tank against external impacts. In the past, fluid-structure interaction analyses have been limited to the obtention of numerical simulation results due to the need for considerable computational resources and excessive computation time. However, recently, computer performance has been dramatically improved, enabling complex numerical analyses such as fluid-structure interaction analysis to be conducted. Lagrangian and Euler coupling methods and Lagrangian based analysis methods are mainly used for fluid-structure interaction analysis. Since both of these methods have their advantages and disadvantages, it is necessary to select the more appropriate one when conducting a numerical analysis. In this study, a numerical analysis of a crash impact test for a fuel tank is performed using ALE. The purpose of the numerical analysis is to estimate the possibility of failure of the fuel tank mounted inside the container when it is subjected to a crash impact. As a result of the numerical analysis, the fluid behavior inside the fuel tank is investigated and the stress generated in the fuel tank and the container structure is calculated, thereby enabling the possibility of fuel tank failure and leakage of the internal fluid to be evaluated.

Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank of Rotorcraft (회전익항공기용 외부 보조연료탱크 충돌충격시험 수치해석)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.724-729
    • /
    • 2017
  • The crashworthiness of the fuel tank of a rotorcraft is verified through the crash impact test. The crash impact test has a high risk of failure due to the application of an excessive load, which can seriously affect the overall development schedule of the aircraft. Therefore, a lot of effort has been made to minimize the possibility of failure in the actual test by carrying out a numerical analysis of the crash impact test of the fuel tank in the initial design stage. Recently, an external auxiliary fuel tank was added to increase the cruising distance. In this study, the numerical analysis results of the crash impact test based on several different shapes of the external auxiliary fuel tank are presented, in order to evaluate its crashworthiness. For the numerical analysis, smoothed particle hydrodynamics (SPH), which is one of the fluid-structure coupled analysis methods, is applied and the test conditions prescribed by US military standards are reflected in the analysis conditions. In addition, the material property data previously obtained by the specimen test of the actual fuel tank is applied to the numerical analysis. As a result, the equivalent stress of the fuel tank material itself and the metal fitting is provided and the possibility of acquiring data for designing the crash-worthiness of the external auxiliary fuel tank is evaluated by examining the behavior and working load of the internal mounted components.

Verification of the Reliability of the Numerical Analysis for the Crash Impact Test of Rotorcraft Fuel Tank (회전익항공기용 연료탱크 충돌충격시험에 대한 수치해석 신뢰성 검증)

  • Kim, Sungchan;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.918-923
    • /
    • 2018
  • The main function of a fuel tank is to store fuel. On the other hand, the structural soundness of the fuel tank is related directly to the survival of the crew in an emergency situation, such as an aircraft crash, and the relevant performance is demonstrated by a crash impact test. Because crash impact tests have a high risk of failure due to the high impact loads, various efforts have been made to minimize the possibility of trial and error in the actual test at the beginning of the design. Numerical analysis performed before the actual test is a part of such efforts. For the results of numerical analysis to be reflected in the design, however, the reliability of numerical analysis needs to be ensured. In this study, the results of numerical analysis and actual test data were compared to ensure the reliability of numerical analysis for the crash impact test of a rotorcraft fuel tank. For the numerical analysis of a crash impact test, LS-DYNA, crash analysis software, was used and the ALE (arbitrary Lagrangian Eulerian) technique was applied as the analysis method. To obtain actual test data, strain gages were installed on the metal fittings of the fuel tank and linked to the data acquisition equipment. The strain and stress of the fuel tank fitting were calculated by numerical analysis. The reliability of the numerical analysis was enhanced by assessing the error between the strain measurement of the upper fitting obtained from an actual fuel tank and the strain calculated from numerical analysis.