• Title/Summary/Keyword: MIG welding

Search Result 125, Processing Time 0.034 seconds

Fatigue Characteristics of Load Carring Cruciform Fillet Welded Joints According to Welding Methods (용접방법에 따른 하중전달 십자형 필렛 용접부의 피로특성)

  • 이용복;오병덕
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.125-133
    • /
    • 2002
  • In this study, it was investigated about endurance limit and fatigue behavior of load carrying fillet welded cruciform joints according to welding methods of SMAW, SAW, MIG and FCAW commonly using for welding structures in present. Endurance limit carried omit highly in the order of SMAW, MIG, SAW, FCAW and fatigue crack propagation ratio carried out lowly in the order of SMAW, MIG, FCAW, SAW. By these results, it is needed to use SMAW or MIG welding methods for welding structures with small welding capacity and SAW or FCAW methods for large welding structures after due consideration about economic gains and operation efficiency of welding. Fatigue crack propagation ratio is more effected by strength of welding materials than endurance limit of welding materials according to welding methods.

  • PDF

A Study on Tensile Properties and HAZ Softening Depending on the Amount of Heat Input in MIG Welding of Al6082-T6 (Al6082-T6의 MIG용접부에서 입열량에 따른 열영향부의 연화와 인장특성에 관한 연구)

  • Baek, Sang-Yeob;Park, Kyung-Do;Kim, Won-Il;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • Al6082-T6 is widely used because of its corrosion resistance and excellent strength. HAZ softening occurs in MIG welding process for this aluminium alloys because this aluminium alloy is heated to higher temperature than its aging temperature during welding. Therefore, low heat input and minimum standard deviation of heat input are required for narrow HAZ width and, for higher strength of welds. In this study, Al6082-T6 was used to examine for HAZ softening with various heat input in aluminium MIG welding. For weldments, micro hardness was measured and tensile test was carried out. Minimum hardness was increased at high speed welding such as 80cm/min and 120cm/min in welding speed comparing with 40cm/min. Also, in case of high speed welding such as 80cm/min and 120cm/min, tensile strength of weldments was increased about 10% comparing with low speed welding(40cm/min).

Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys (이종 알루미늄 합금의 로봇 미그 용접 시 용접재료에 따른 기계적 및 전기화학적 특성 평가)

  • Kim, Seong Jong;Han, Min Su;Woo, Yong Bin
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.245-252
    • /
    • 2013
  • In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

The Arc Brazing by Variable Polarity AC Pulse MIG Welding Machine (극성가변 AC 펄스 MIG용접기를 이용한 아크 브레이징)

  • 조상명;공현상
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.56-62
    • /
    • 2003
  • MIG brazing is used for many parts without melting base metal because of high productivity. Pulsed MIG brazing can be used to further reduce heat input and to improve the process stability. However, a significant amount of zinc in galvanized sheet steel is burned off in the area of brazes. Therefore, the brazing method to reduce the heat input is needed. In the brazing for galvanized sheet steel, variable polarity AC pulse MIG arc brazing can be applied to more decrease the heat input by setting EN-ratio adequately. In this research, we studied for the variable polarity AC pulse MIG arc brazing to decrease the heat input by using ERCuSi-A wire. As the result of increasing EN-ratio, melting ratio of base metal and burning off of zinc were reduced in galvanized sheet steel.

Fatigue Characteristics of Load-Carrying-Cruciform-Fillet-Welded-Joints According to Welding Methods (용접방법에 따른 하중전달 십자형 필렛 용접부의 피로특성)

  • 이용복;오병덕
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, endurance limit and fatigue behavior of load carrying fillet welded cruciform joints depending on commonly used welding methods such as SMAW, SAW, MIG and FCAW are investigated. In respect of endurance limit SMAW specimen showes highest result, and then MIG, SAW, FCAW in descending order. However, SMAW specimen showes lowest crack growth rate and it followed by MIG, FCAW, SAW. By these results, it is needed to use SMAW or MIG welding methods for welding structures with small welding capacity and SAW or FCAW methods for large welding structures with respect to economic benefits and operation efficiency of welding. It was also shown fatigue crack growth rate was more influenced by the strenght of welding materials than the endurance limit of welding materials.

Characteristics of Pulse MIG Arc Welding with a Wire Melting Rate Change by Current Polarity Effect

  • Kim, Tae-Jin;Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook;Kim, Cheul-U
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.366-372
    • /
    • 2007
  • Joining thin aluminum alloy is difficult using most welding techniques. Many of the problems are associated with bum-through by the high heat input. Common welding techniques are TIG (Tungsten Inert Gas), MIG (Metal Inert Gas), and PULSE-MIG welding. The method provides more control of the heat balance in the welding arc by taking advantage of the different arc characteristics obtained with each of the two polarities. In this paper, we proposed a new welding method by control DSP 320C32, and the characteristic and experiment result-voltage, current, welding bead, and penetrations by this method are presented.

The Study of Variable Polarity AC Pulse MIG Arc Welding System (출력전류 극성비 변화를 가지는 펄스MIG아크용접의 특성)

  • 김태진;백주원;조상명;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.307-312
    • /
    • 2003
  • Joining thin aluminum alloy is difficult using most welding techniques. Many of problems associated burn-through by the high heat input. Common welding techniques are TIG, MIG, and MIG-PULSE welding. The VP-GMAW provides more control of the heat balance in the welding arc by taking advantage of the different arc characteristics obtained with each of the two polarities. In this paper, we proposed new VP-GMAW method by control DSP 320C32, and the characteristic and experiment result-voltage, current, welding bead, penetration by this method are presented.

EFFECTS OF AGING TREATMENT ON MICROSTRUCTURE AND STRENGTH OF WELD HEAT AFFECTED ZONE OF 6N01-T5 ALUMINUM ALLOY

  • Yoshida, Naoharu;Shibao, Masami;Ema, Mitsuhiro;Sasabe, Seiji;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.59-64
    • /
    • 2002
  • Effects of the aging treatments on the microstructure and strength of heat affected zone(HAZ) in the welds of a age-hardened Al-Mg-Si alloy, 5N01-T5, were investigated. The base metal aging treatments before MIG welding were conducted at 423K to 473K for 28.8ks Post weld heat treatment(PWHT) to recover the HAZ strength was performed at 448K for 28.8ks. Microstructure observations, hardness measurements and tensile tests were conducted to study properties of the MIG weld joints. The position of the softest region in HAZ where the hardness insufficiently recovered after natural aging and PWHT was at a distance of approximately 15mm from the center of the fusion zone. Hardness of the softest regions after natural aging and PWHT decreased with increase in the base metal aging temperature. TEM observation clarified that strengthening ${\beta}$"(Mg$_2$Si) precipitates and coarse ${\beta}$′ precipitates affected the hardnes of HAZ. Incomplete recover of hardness in HAZ after PWHT was caused by the precipitating of non-hardening ${\beta}$′ phase during the weld thermal cycle. In order to examine the effects of weldheat input and welding speed, the laser weld joints were also investigated and compared with the MIG weld ones. Laser welding had the narrower width of the softened regions in HAZ compared with MIG welding. The hardness of the softest regions of the laser welds after PWHT was higher than that of the MIG welds. Quantitative relations between hardness of the softest region and base metal aging temperature were obtained for both welding processes. Accordingly, the equations to estimate the strength of the weld joints after PWHT with varying base metal temperatures were proposed for MIG welding and laser welding.

  • PDF

Comparative Study on the Fatigue Properties of FSW and MIG Joints of A16005 Sheets to Design Railway Vehicles (철도차량 설계를 위한 A16005 알루미늄 판재의 마찰교반용접(FSW)과 MIG 용접부의 피로 특성 비교 연구)

  • Choi, Won-Doo;Ko, Jun-Bin;Gu, Gi-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.653-659
    • /
    • 2010
  • Friction stir welding results in low distortion and high joint strength compared with other welding procedures, and is able to join all aluminium alloys that are not considered as virtually weldable with classical liquid state techniques. The comparative study on high cycle fatigue properties between A16005-T6 friction stir welds and MIG weld joints have been performed and fracture mechanisms for the fatigue specimens were investigated. Although mechanical properties are lower than the corresponding base material, FSW joints of A16005-T6 become higher at tensile and fatigue strength in comparison with the traditional fusion weld(MIG). The fracture surfaces of FSW and MIG fatigue specimens cleary show different aspects of the fracture morphology. MIG weldments were characterized by voids and cleavage(brittle fracture) but FSW specimens showed the presence of ductile fracture surface.