• Title/Summary/Keyword: MIBK

Search Result 67, Processing Time 0.019 seconds

Degradation Characteristics of Methyl Ethyl Ketone and Methyl Isobuthyl Ketone by Pseudomonas putida KT-3. (Pseudomonas putida KT-3의 Methyl Ethyl Ketone 및 Methyl Isobuthyl Ketone 분해 특성)

  • 김민주;이태호;이경미;류희욱;조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.395-401
    • /
    • 2002
  • Methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) have been widely used as solvents in various industries. Biodegradation of MEK and MIBK by Pseudomonas putida KT-3, which could utilize MEK or MIBK as a sole carbon source, was characterized, and the cosubstrate interaction in MEK/MIBK mixture was also studied. Within the range of initial MEK concentration (from 0.5 to 5.5 mM), an increased substrate concentration increased the specific degradation rate of MEK by P putida KT-3 (from 3.15 to 10.58 mmol/g DCW$\cdot$h), but the rate sightly increased at 11.0 mM of initial MEK concentation (11.28 mmol/g DCW$\cdot$h). The similar degradation rates of MIBK (4.69-4.92 mmol/g DCW$\cdot$h) were obtained at more than 3.0 mM of initial MIBK concentation. Kinetic analysis on the degradation of MEK/MIBK mixture by P. putida KT-3 showed that MEK or MIBK acted as a competitive inhibitor. Maximum degradation rate ($V_{max}$), saturation constant ($K_{m}$) and inhibition constant ($K_{1}$) were as follows: $V_{max,MEK}$=12.94 mmol/g DCW$\cdot$h; $K_{m,MEK}$=1.72 mmol/L; $K_{l,MEK}$=1.30 mmol/L; $V_{max,MIBK}$=5.00 mmol/g-DCW$\cdot$h; $K_{m,MIBK}$=0.42 mmol/L; $K_{l,MEK}$=0.77 mmol/L.

Determination of Mn, Co, Ni and Cu in Iron Oxide Ore by Atomic Absorption spectroscopy. Utilization of APDC-MIBK Extraction System (원자흡수 분광법에 의한 철광석중의 Mn, Co, Ni 및 Cu 의 정량. APDC-MIBK 추출계의 이용)

  • Misun Park;Youn-Doo Kim;Kwanghee Koh Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.315-320
    • /
    • 1989
  • A method was presented for the analysis of trace metals in iron oxide ore. The method utilized ammonium pyrrolidinedithiocarbamate (APDC)-methyl isobutyl ketone (MIBK) extraction procedure and analysis by atomic absorption spectroscopy (AA). Citrate at pH $8{\sim}10$ for the determination of Co, Ni and Cu or tiron at pH $6{\sim}7$for the determination of Mn and Cu was added as a masking agent to prevent extraction of Fe(III) into the organic phase. Reduction of solubility of MIBK in water was achieved by addition of NaCl as a salting-out agent. Back extraction of the MIBK extracts with aqueous $HNO_3$ was also studied to increase the stability of metal extracts.

  • PDF

Effects of Solvent Mixtures on Dispersion and Rheology of Alumina/zirconia Tape Casting Slurries (알루미나/지르코니아 테이프 케스팅 슬러리의 분산과 레올로지에 미치는 용매혼합의 영향)

  • Kim, Ji-Hyeon;Yang, Tae-Yeong;Lee, Yun-Bok;Yun, Seok-Yeong;Park, Heung-Chae
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.519-526
    • /
    • 2001
  • The effects of methyl isobutyl ketone(MIBK)/ethanol(EtOH) solvent mixtures on the dispension, particle size distribution and rheology of $Al_2$O$_3$/ZrO$_2$ nonaqueous suspensions were investigated by measuring sedimentation density and viscosity. The sedimentation density of $Al_2$O$_3$ and ZrO$_2$ particles increased in MIBK-rich($\geq$60 vol%) solvents with 'Hypermer' KD-1 as a dispersant. The ball-milled suspensions in 80MIBK/20EtOH(vol%) solvent exhibited the narrow and unimodal particle size distribution. Although all Suspensions exhibited the Pseduo-Plastic flow(Shear thinning) the shear thinning behavior was somewhat different depending on the mixture ratio of $Al_2$O$_3$/ZrO$_2$ and MIBK/EtOH. Under a given shear rate( <300 s$^{-1}$ for $Al_2$O$_3$; <3000 s$^{-1}$ for ZrO$_2$) the strongest shear thinning appeared in the $Al_2$O$_3$ and ZrO$_2$ suspensions with pure MIBK solvent. The shear thinning was nearly independable on the mixture ratio of $Al_2$O$_3$/ZrO$_2$ in case of using the identical solvent(80MIBK/20EtOH, vol%).

  • PDF

Measurement conditions for cadmium in urine by flame atomic absorption spectrophotometry (불꽃원자 흡수광법에 의한요중 카드뮴 배설량 측정의 지적조건)

  • Choi, Ho-Chun;Chung, Kyou-Chull
    • Journal of Preventive Medicine and Public Health
    • /
    • v.17 no.1
    • /
    • pp.269-279
    • /
    • 1984
  • The optimum conditions for measuring cadmium content of less than 0.2ppm by flame atomic absorption spectrophotometry were investigated. The cadmium in urine was extracted by APDC-MIBK for the analysis by atomic absorption spectrophotometry after ashing them by a wet method. 1. Optimum conditions by APDC-MIBK and DDTC-MIBK extractions. The acidic aqueous solution was prepared with appropriate amount of 0.IN nitric acid, 5ml of 25% (W/V) sodium potasstum tartarate, 10ml of saturated ammonium sulfate, and 2ml of 2% APDC(or 1 ml of 5% DDTC) chelating agent. The total volume of solution was adjusted to 55 ml and pH to $2{\sim}10$ (or$7{\sim}10$). The aqueous solution was extracted with 10ml MIBK. Concentration of Triton X-100 did not effect the absorbance for APDC-MIBK extraction of cadmium, but absorbance decreased as the concentration increased for DDTC-MIBK extraction. The sensitivity and detection limits for the cadmium determination from APDC-MIBK extraction were 0.0038ppm and 0.0102, 0.0022ppm and 0.0116 for DDTC-MIBK, and 0.0132ppm and 0.0034 for 0.1N nitric acid. APDC-MIBK and DDTC-MIBK extractions were 3 times higher than 0.1N nitric acid for the sensitivity. 2. Excretion of cadmium in 24-hour urine by APDC-MIBK extraction. Determination of cadmium in urine by atomic absorption spectrophotometry of A.A. (Cd=2 mA) mode and B.C. (Cd=4 mA) mode and B.C. (Cd=4mA, $D_2=20mA$) mode showed some difference (p<0.05). The difference of cadmium determination and recovery according to method of standard additions and standard calibration curve method in urine was not significant (p>0.05, $93.48{\pm}11.78%,\;94.83{\pm}22.00%$). Excretion of cadmium in 24-hour urine collection from normal person and variance analysis within measurement variation was not significant (p>0.05), but between interindividual was significant (0.05). Determination of cadmium content by two different methods of flame atomic absorption spectrophotometry and dithizone colorimetry showed that the results from the two methods can be described by a regression line with a good correlation (y=1.0153x-0.2927, x=Cd by D.C., y=Cd by A.A.S., $r=0.8651^*$, p<0.01).

  • PDF

Determination of gold concentration in ore by ICP-AES with MIBK (ICP-AES와 MIBK 용매를 이용한 광물중의 금 분석)

  • Lim, Heon-Sung;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.496-501
    • /
    • 2007
  • The 242.795 nm on ICP-AES for the gold analysis was the most sensitive wavelength which was also interfered severely by the spectra of other metal ions such as manganese, chromium, cobalt, and iron. In order to analyze the gold in ore, the gold must be separated from the interfering ions. The best solvent for separation of gold in ore solution was 10 % n-hexane contained MIBK mixed solvent. The gold recovery was 97.5 % from mixed metal solution contained about 2 M $HNO_3$ and 0.5 M HCl.

Solvent Extraction of Li(I) from Weak HCl Solution with the Mixture of Neutral Extractants Containing FeCl3 (FeCl3를 함유한 중성추출제의 혼합용매로 약한 염산용액으로부터 리튬(I)의 용매추출)

  • Xing, Weidong;Lee, Seah;Lee, Manseung
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.53-58
    • /
    • 2018
  • Solvent extraction of Li(I) from weak HCl solution was investigated by the mixture of TBP/MIBK with other neutral extractants such as Cyanex 923, TOPO and TOP. The TBP/MIBK organic phase was loaded with 0.1 M $FeCl_3$ at different HCl concentrations (1-9 M). Extraction of Li(I) from weak HCl solution is related to the stability of $FeCl_3$ in the organic mixture. As HCl concentration increased in preparing the loaded TBP phase, the stripping percentage of Fe(III) during the extraction of Li(I) became reduced and thus Li(I) could be extracted by ion exchange reaction with hydrogen ion in the organic. The concentration of TBP in the extractant mixture affected the stability of $FeCl_3$. Compared to TBP, Fe(III) was easily stripped from the loaded MIBK and thus no Li(I) was extracted by the mixture with MIBK. The nature of neutral extractant with TBP/MIBK showed little difference in the extraction of Li(I) and stripping of Fe(III).

Effect of Solvents on Reactive Extraction of Acrylic Acid (Acrylic Acid의 반응추출에 미치는 용매의 영향)

  • 이상훈;신정호
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.753-759
    • /
    • 1998
  • In physical and reactive extraction of acrylic acid using various solvents the equilibrium characteristics of extraction were investigated. The degree of extraction in reactive extraction with Tri-n-octylamine(TOA) was 1.5~3 times than that in physical extraction. Distribution ratio was constant in methyl isobutyl ketone(MIBK) and n-butylacetate(n-BAc) but was increased with increasing the concentration of acrylic acid in benzene and chloroform. It can be explained by formation of dimers. Maximum extraction leadings of acrylic acid were three in benzene and were two in MIBK, chloroform and n-BAc, and it was found that acrylic acid was extracted as the form of $A_3$R In benzene and $A_2R$ in MIBK, chloroform and n-BAc. In effect of solvent, the degree of extraction was increased as he difference of solubility parameter of solvent and solute was decreased, and as dielectric constant of solvent was increased.

  • PDF

Separation of Organic Pollutants by Nondispersive Membrane-Solvent Extraction (비분산 막-용매추출에 의한 유기오염물의 분리)

  • 유홍진;한성록
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.174-185
    • /
    • 2004
  • Organic pollutants (Phenol, 2-Chlorophenol, Nitrobenzene) were separated from wastewater by nondispersive membrane solvent extraction, using a microporous hydrophobic hollow fiber module. The system was operated countercurrently and cocurrently with the aqueous phase flowing through the fiber lumens and the solvent flowing through the shell side. The distribution coefficients of several solvents (MIBK, IPAc, Hexane) were examined and MIBK was selected as an extracting solvent. Separation efficiency of countercurrent flow method was better than that of cocurrent flow method. Also, the overall mass transfer coefficients were determined.

  • PDF

Effects of temperature and relative humidity on the sampling efficiencies of mixed organic vapors measured by diffusion monitors (확산 포집기로 공기중 혼합유기용제 포집시 온도와 상대습도가 포집효율에 미치는 영향)

  • Han, Jin gu;Roh, Young Man;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.200-211
    • /
    • 1995
  • This study was designed to evaluate the effects of temperature and humidity on the sampling efficiency of mixed organic vapors of l,2-DCE, benzene, and MIBK by 3 different types of diffusion monitors. Independent variables used for the study were temperatures ($25^{\circ}C$, $35^{\circ}C$), humidities (30%, 80%), and vapor concentrations (low, medium, and high). In addition, vapor concentrations measured by the traditional charcoal tube method were used as reference values and were compared with those of by diffusion monitors. The results were as follows: 1. The desorption efficiencies(DE) of 1,2-DCE and benzene from charcoal tubes and from diffusion monitors ranged from 98% to 105%. In contrast, the DEs of MIBK from charcoal tubes and diffusion monitors except DM1 ranged from 71% to 85%. The DE of MIBK from DM1 was 98%. 2. No statistically significant differences of 1,2-DCE concentrations and the sampling efficiencies regardless of temperatures and humidities studied between charcoal tube and 3 diffusion monitors were found. 3. At 80% humidity, increasing frequencies of 1,2-DCE breakthrough at higher temperature and higher vapor concentration measured by charcoal tubes were observed. 4. No statistically significant difference of benzene concentrations were found between charcoal tube and diffusion monitors except DM3. The sampling efficiencies of DM3 were statistically significantly lower at all experimental conditions except the $35^{\circ}C$ and 30% humidity condition. 5. No statistically significant difference of MIBK concentrations were found between charcoal tube and diffusion monitors except DM3. The sampling efficiencies of DM3 were statistically significantly higher at higher humidity conditions regardless of temperature. Although statistically not significant, sampling efficiency of MIBK showed positive correlation with humidity while negative correlation with concentration was observed. 6. For sampling 1,2-DCE and benzene, no significant variations of concentrations among three diffusion monitors regardless of temperature and humidity conditions were found. For MIBK sampling, however, wide variations with increasing humidity among diffusion monitors were obtained. In conclusion, this study suggests that diffusion monitors will be a reasonables substitute for the traditional charcoal tubes for sampling non-polar organic vapors at temperature and humidity conditions studied. For polar organic vapors, use of an alternative desorption solution other than CS2 is recommended because of its low desorption efficiency. In addition, since variable among diffusion monitors for polar organic vapors particularly at higher humidity conditions were observed, further study is recommended of the effects of humidity on the performance of diffusion monitors.

  • PDF

Removal Characteristics of Volatile Organic Compounds in Biofilters and Stoichiometric Analysis of Biological Reaction by Carbon Mass Balance (바이오필터의 휘발성유기화합물 제거특성 및 탄소물질수지를 이용한 생물반응의 양론적 해석)

  • Kim, Dae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.747-753
    • /
    • 2010
  • This study was performed to investigate the removal characteristics of volatile organic compounds (VOCs) in the gasphase biofilters, and to propose a stoichiometric analysis approach to characterize biological reaction through carbon mass balance. The VOCs studied were toluene, styrene, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) as a single substrate for each biofilter. The critical loading rate was determined to be $46.9\;g/m^3{\cdot}hr$, $25.8\;g/m^3{\cdot}hr$, $96.3\;g/m^3{\cdot}hr$, and $66.5\;g/m^3{\cdot}hr$ for toluene, styrene, MEK, and MIBK, respectively. The obtained results indicated that the critical loading rate was well correlated the octanol-water partition coefficient. In the analysis of carbon mass balance, carbon recovery to $CO_2$ became relatively lower as substrate loadings increased, but higher for carbon recovery to biomass. Stoichiometric analysis revealed that biomass yield increased as substrate loadings increased, and its coefficient (g biomass/g substrate) varied from 0.31 to 0.57 for toluene, 0.29 to 0.57 for styrene, 0.08 to 0.56 for MEK, and 0.14 to 0.53 for MIBK.