• Title/Summary/Keyword: MHD flow

Search Result 93, Processing Time 0.04 seconds

An Experimental Study on Magnetohydrodynamic Flow in MHD Propulsion System (MHD 추진장치내의 자기유체 유동에 관한 실험적 연구)

  • 노창주;김윤식;공영경;이성근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.50-59
    • /
    • 1993
  • Usually ship is propelled by the conventional propeller. When the conventional propeller is used for ship's propulsion, reduction of propeller noise is big issue in some special vessel. In order to reduce the acoustic noise of the propeller, novel propulsion system named as MHD propulsion system has been studied among researchers. In this paper, thruster characteristic analysis and system analysis of MHD propulsion system have been carried out. Firstly basic experimental apparatus is designed, fabricated and installed and test is carried out. Test results are compared with numerical analysis. It is confirmed that test results agreed with numerical results satisfactorily.

  • PDF

MHD (Magnetohydrodynamic) Micropump Using Lorentz Force (로렌츠 힘을 이용한 MHD(Magnetohydrodynamic) 마이크로펌프)

  • 장재성;이승섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.93-99
    • /
    • 1998
  • We present a novel micropump of which pumping mechanism is based upon MHD (Magnetohydrodynamic) principle. The MHD micropump uses Lorentz force as pumping source. In the MHD micropump, Lorentz force is applied into initially stagnant conducting fluid to drive it in magnetic and electric field to flow in both directions. The performance of the MHD micropump is obtained by measuring the pressure head difference and flow rate as applied voltage changes from 10 to 60 V DC at 0.19 and 0.44 Tesla. The pressure head difference is 18 mm at 38 mA and the flow rate is 63 ${\mu}{\ell}$ /min at 1.8 mA when the inside diameter of inlet/outlet tube is 2 mm and the magnetic flux density is 0.44 Tesla.

  • PDF

Magnetohydrodynamic (MHD) Micromixer Using Multi-Vortical Flow (다중 와류 유동을 이용한 자기유체역학 (MHD) 마이크로 믹서)

  • Yang, Won-Seok;Kim, Dong-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • In this paper, we propose a novel chaotic micromixer of which mixing mechanism is based upon magnetohydrodynamic (MHD) multi-vortical flow generation in a simple straight microchannel. In the microchannel of the micromixer has electrodes patterned on two side walls and bottom wall. Lorentz forces are variously induced by changing applied voltages at the patterned electrodes in order to pump and mix conductive fluids in the microchannel. Three-dimensional computational fluid dynamics simulations were conduced to characterize mixing behaviors inside the MHD micromixer. The mixing efficiencies were also evaluated for the various flow conditions.

Experiment on Small A.C. MHD Power Generator (소용량 교류 MHD발전기에 대한 실험적 연구)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.25 no.5
    • /
    • pp.79-87
    • /
    • 1976
  • This paper is to investigate the A.C generation of MHD engine, converting directly the kinetic energy of conductive gas in high temperature to electric power by the effect of magnetic field. It is known that there are at least two kinds of method in A.C MHD power generation; one, by sending stationary plasma flow in an alternating or rotating magnetic field and the other, by transmission of pulse type plasma flow in uniform and constant magnetic field, former method is adopted here. In order to raise the total efficiency of close cycle in combination with nuclear power and MHD genertaion, an argon plasma jet is utilized as heat source, which is not mixed with the seed material, and the design data are obtained for A.C MHD generation in small capacity, but induced voltage and power output have the maximum values, 15 voltages and 7.5W respectively due to plasma flow with low conductivity and weak magnetic field.

  • PDF

Numerical Analysis and Experimental Investigation of Duct Flows of an MHD Propulsion System (사각형의 MHD 추진 덕트 내부유동에 관한 수치해석 및 실험적 연구)

  • J.W. Lee;S.J. Lee;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.83-93
    • /
    • 1995
  • A numerical and experimental investigation on the flow characteristics in the rectangular duct of an MHD propulsion system has been carried out. In numerical analysis, three-dimensional, steady-state, viscous, incompressible electrically conducting fluid flow under the influence of uniformly applied magnetic and electric fields was treated using a finite-difference technique. It was found from the numerical study that when the Lorentz force is weak, the typical parabolic velocity profile under a laminar flow condition changes to an M shaped profile near the electrode region and that the pressure increases linearly from the inlet toward the outlet of the MHD duct under constant electro-magnetic field. In experiment, thrust of the MHD propulsion system can be controlled easily by varying electrode current. The measured pressure gradient along the MHD duct is proportional to the Lorentz force, which is in agreement with the numerical results.

  • PDF

Mathematical approach for optimization of magnetohydrodynamic circulation system

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.654-664
    • /
    • 2019
  • The geometrical and electromagnetic variables of a rectangular-type magnetohydrodynamic (MHD) circulation system are optimized to solve MHD equations for the active decay heat removal system of a prototype Gen-IV sodium fast reactor. Decay heat must be actively removed from the reactor coolant to prevent the reactor system from exceeding its temperature limit. A rectangular-type MHD circulation system is adopted to remove this heat via an active system that produces developed pressure through the Lorentz force of the circulating sodium. Thus, the rectangular-type MHD circulation system for a circulating loop is modeled with the following specifications: a developed pressure of 2 kPa and flow rate of $0.02m^3/s$ at a temperature of 499 K. The MHD equations, which consist of momentum and Maxwell's equations, are solved to find the minimum input current satisfying the nominal developed pressure and flow rate according to the change of variables including the magnetic flux density and geometrical variables. The optimization shows that the rectangular-type MHD circulation system requires a current of 3976 A and a magnetic flux density of 0.037 T under the conditions of the active decay heat removal system.

Long-Term Evolution of Decaying MHD Turbulence in the Multiphase ISM

  • Kim, Chang-Goo;Basu, Shantanu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2013
  • Supersonic turbulence is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to investigate the role of global magnetic fields and structures. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in warm neutral medium. Early evolution is consistent with previous studies characterized rapid decay of turbulence with the decaying time shorter than a flow crossing time and power-law temporal decay of turbulent kinetic energy with slope of -1. If initial magnetic fields are strong and perpendicular to the sheet, however long term evolutions of kinetic energy shows that a significant amount of turbulent energy still remains even after ten flow crossing times, and decaying rate is reduced as field strengths increase. We analyse power spectra of remaining turbulence to show that incompressible, in-plane motions dominate.

  • PDF

SORET AND ELECTROMAGNETIC RADIATION EFFECT OF MHD MICRO POLAR FLUID PAST A POROUS MEDIUM IN THE PRESENCE OF CHEMICAL REACTION

  • SHEEBA JULIET S.;VIDHYA, M.
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.1085-1102
    • /
    • 2023
  • In this study the magneto hydrodynamic (MHD) micro polar fluid flow of a viscous incompressible fluid past a porous medium in the presence of chemical reaction is considered. This work is devoted to investigate the Soret effect and Electromagnetic radiation effect and analyze analytically. In the energy equation the applied magnetic field strength and in the concentration equation the Soret effect are incorporated. The basic PDE (partial differential equations) are reduced to ODE (ordinary differential equations) using non dimensional variables. Then the analytical solution of the dimensionless equations are found using perturbation technique. The features of the fluid flow parameters are analyzed, discussed and explained graphically. The graphical solutions are found using MATLAB R2019b. Skin friction coefficient at the wall, Couple stress coefficient at the plate and the local surface heat flux are also thoroughly examined. Overall, this study sheds light on the complex interplay between physical parameters in the behavior of MHD micro-polar fluid past a porous medium in the presence of chemical reaction.

MHD Pressure Drop of a Liquid-Metal Flow under a Transverse Magnetic Field (자기장하의 액체금속 유동의 차압 측정)

  • Cha, Jae-Eun;Kim, Hee-Reyoung;Kim, Jong-Man;Nam, Ho-Yoon;Kim, Sung-O;Kim, Byung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2638-2641
    • /
    • 2007
  • The magnetohydrodynamic(MHD) pressure drop along a liquid sodium flow was measured in a rectangular duct under a transverse magnetic field. The test section was made of a 3 mm thick stainless steel SUS304 with a $74{\times}5mm^2$ rectangular flow channel. The range of experimental parameters was roughly B=0${\sim}$0.18T and U=0${\sim}$0.9m/s at around $200^{\circ}C$. The differential pressure was measured by a diaphragm seal-type pressure transmitter filled with a high temperature silicon oil within 0.1MPa. The experimental results show a similar pressure drop with the theoretical estimation according to a change of the flow velocity and the magnetic field.

  • PDF

An Experimental and Numerical Analysis of Flow of Electromagnetic Pump for Molted Metal Transport (용융금속 이송용 전자기 펌프의 유동해석 및 실험)

  • Choi, Jae-Ho;Lim, Hyo-Jae;Kim, Chang-Eob;Kwon, Jung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2621-2625
    • /
    • 2007
  • This study aims at analyzing the flow characteristics of the electromagnetic pump using a linear induction motor (LIM) for transferring molten metals. The flow characteristics of the pump are simulated by magnetohydrodynamic(MHD) program. In this system, the LIM is used for transferring molten metal by electromagnetic force. The molten metal is treated as the secondary part of the LIM. Since the LIM produces an electromagnetic force in the duct, the molten metal can flow from the furnace to the reservoir. The flow characteristics of the pump are analyzed using MHD program for magnetic field of 0.1[T] in duct. In order to prove the analysis, we made a prototype electromagnetic pump using LIM.

  • PDF