• Title/Summary/Keyword: MHD duct

Search Result 8, Processing Time 0.043 seconds

Numerical Analysis and Experimental Investigation of Duct Flows of an MHD Propulsion System (사각형의 MHD 추진 덕트 내부유동에 관한 수치해석 및 실험적 연구)

  • J.W. Lee;S.J. Lee;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.83-93
    • /
    • 1995
  • A numerical and experimental investigation on the flow characteristics in the rectangular duct of an MHD propulsion system has been carried out. In numerical analysis, three-dimensional, steady-state, viscous, incompressible electrically conducting fluid flow under the influence of uniformly applied magnetic and electric fields was treated using a finite-difference technique. It was found from the numerical study that when the Lorentz force is weak, the typical parabolic velocity profile under a laminar flow condition changes to an M shaped profile near the electrode region and that the pressure increases linearly from the inlet toward the outlet of the MHD duct under constant electro-magnetic field. In experiment, thrust of the MHD propulsion system can be controlled easily by varying electrode current. The measured pressure gradient along the MHD duct is proportional to the Lorentz force, which is in agreement with the numerical results.

  • PDF

An Experimental Study on Magnetohydrodynamic Flow in MHD Propulsion System (MHD 추진장치내의 자기유체 유동에 관한 실험적 연구)

  • 노창주;김윤식;공영경;이성근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.50-59
    • /
    • 1993
  • Usually ship is propelled by the conventional propeller. When the conventional propeller is used for ship's propulsion, reduction of propeller noise is big issue in some special vessel. In order to reduce the acoustic noise of the propeller, novel propulsion system named as MHD propulsion system has been studied among researchers. In this paper, thruster characteristic analysis and system analysis of MHD propulsion system have been carried out. Firstly basic experimental apparatus is designed, fabricated and installed and test is carried out. Test results are compared with numerical analysis. It is confirmed that test results agreed with numerical results satisfactorily.

  • PDF

An Experimental and Numerical Analysis of Flow of Electromagnetic Pump for Molted Metal Transport (용융금속 이송용 전자기 펌프의 유동해석 및 실험)

  • Choi, Jae-Ho;Lim, Hyo-Jae;Kim, Chang-Eob;Kwon, Jung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2621-2625
    • /
    • 2007
  • This study aims at analyzing the flow characteristics of the electromagnetic pump using a linear induction motor (LIM) for transferring molten metals. The flow characteristics of the pump are simulated by magnetohydrodynamic(MHD) program. In this system, the LIM is used for transferring molten metal by electromagnetic force. The molten metal is treated as the secondary part of the LIM. Since the LIM produces an electromagnetic force in the duct, the molten metal can flow from the furnace to the reservoir. The flow characteristics of the pump are analyzed using MHD program for magnetic field of 0.1[T] in duct. In order to prove the analysis, we made a prototype electromagnetic pump using LIM.

  • PDF

A Numerical Study on the Flow and Performance Characteristics of a Piezoelectric Micropump with Electromagnetic Resistance for Electrically Conducting Fluids (전자기 전항을 이용한 압전 구동방식 마이크로 펌프의 유동 및 성능 특성에 관한 수치해석적 연구)

  • An, Yong-Jun;Choi, Chung-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2788-2793
    • /
    • 2008
  • A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD(Magnetohydrodynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS(Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studies by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study.

  • PDF

MHD Pressure Drop of a Liquid-Metal Flow under a Transverse Magnetic Field (자기장하의 액체금속 유동의 차압 측정)

  • Cha, Jae-Eun;Kim, Hee-Reyoung;Kim, Jong-Man;Nam, Ho-Yoon;Kim, Sung-O;Kim, Byung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2638-2641
    • /
    • 2007
  • The magnetohydrodynamic(MHD) pressure drop along a liquid sodium flow was measured in a rectangular duct under a transverse magnetic field. The test section was made of a 3 mm thick stainless steel SUS304 with a $74{\times}5mm^2$ rectangular flow channel. The range of experimental parameters was roughly B=0${\sim}$0.18T and U=0${\sim}$0.9m/s at around $200^{\circ}C$. The differential pressure was measured by a diaphragm seal-type pressure transmitter filled with a high temperature silicon oil within 0.1MPa. The experimental results show a similar pressure drop with the theoretical estimation according to a change of the flow velocity and the magnetic field.

  • PDF

Analysis of MHD Flow Characteristics under an Electromagnetic Forces (전자기력을 고려한 MHD 유동특성해석)

  • Kim, Min-Seok;Kim, Jung-Hyun;Jeon, Mun-Ho;Kim, Chang-Eob;Kim, Seo-Hyun;Kwon, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.876-877
    • /
    • 2007
  • This paper presents the MHD characteristics of the liquid metal flow using an electromagnetic force. The flow velocity has been calculated by treating the Lorentz force as a source term in the Navier-Stokes equation. The liquid metal flow in duct using an electromagnetic pump was analyzed with the Lorentz force varied.

  • PDF

Development of Small Performance Test Device for Helical-Type Magnetohydrodynamic (MHD) Seawater Propulsion Thruster (헬리컬형 자기유체역학(MHD) 해수 추진기 소형 성능시험장치 개발)

  • Chang, Doo-Hee;Jo, Jong Gab;Chang, Dae-Sik;Kim, Sun-Ho;Jin, Jeong-Tae;Ryu, Chang-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.46-54
    • /
    • 2022
  • A magnetohydrodynamic (MHD) seawater propulsion thruster has been proposed to reduce propeller noise, propeller pitting, and vessel vibration originated from the propeller cavitation. The MHD thruster was also focused to overcome the limitation of propulsion velocity for the special purpose of marine ships. The research trends and key technologies in the worldwide leading countries are reviewed for the development of MHD propulsion thrusters in Korea. A small performance test device was developed firstly with a conventional solenoid magnet of ≤0.6 Tesla and a helical-type cylindrical duct(inner diameter of 5 cm) of thruster. The artificial seawater was fabricated by a salt solution including a conductivity of 5~6 S/m. The measured flow velocity of artificial seawater in the test device was 0.03~0.42 m/s (0.06~0.84 Knot) with a magnetic field strength of 0.6 Tesla and the applied currents of 10~80 A including the change of anode materials. It was found that the flow direction of seawater was reversed by the directional change of applied current in the solenoid magnet.

Analysis of Duct Flow Characteristics under an Electromagnetic Force (전자기력에 의한 덕트 내부의 유동특성)

  • Kim, Min-Seok;Kim, Jung-Hyun;Jeon, Mun-Ho;Kim, Chang-Eob;Kim, Seo-Hyun;Kwon, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.141-143
    • /
    • 2007
  • This paper presents the MHD characteristics of the liquid metal flow. The electromagnetic force was calculated by the equivalent circuit method. This Lorentz force was used as a source term for the fluid flow equations. The modified Navier-Stokes equation was solved to give the velocity distributions of the liquid metal flow.

  • PDF