• 제목/요약/키워드: MHC class

검색결과 181건 처리시간 0.027초

Genetic assessment of BoLA-DRB3 polymorphisms by comparing Bangladesh, Ethiopian, and Korean cattle

  • Mandefro, Ayele;Sisay, Tesfaye;Edea, Zewdu;Uzzaman, Md. Rasel;Kim, Kwan-Suk;Dadi, Hailu
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.248-261
    • /
    • 2021
  • Attributable to their major function in pathogen recognition, the use of bovine leukocyte antigens (BoLA) as disease markers in immunological traits in cattle is well established. However, limited report exists on polymorphism of the BoLA gene in zebu cattle breeds by high resolution typing methods. Thus, we used a polymerase chain reaction sequence-based typing (PCR-SBT) method to sequence exon 2 of the BoLA class II DRB3 gene from 100 animals (Boran, n = 13; Sheko, n = 20; Fogera, n = 16; Horro, n = 19), Hanwoo cattle (n = 18) and Bangladesh Red Chittagong zebu (n = 14). Out of the 59 detected alleles, 43 were already deposited under the Immuno Polymorphism Database for major histocompatibility complex (IPD-MHC) while 16 were unique to this study. Assessment of the level of genetic variability at the population and sequence levels with genetic distance in the breeds considered in this study showed that Zebu breeds had a gene diversity score greater than 0.752, nucleotide diversity score greater than 0.152, and mean number of pairwise differences higher than 14, being very comparable to those investigated for other cattle breeds. Regarding neutrality tests analyzed, we investigated that all the breeds except Hanwoo had an excess number of alleles and could be expected from a recent population expansion or genetic hitchhiking. Howbeit, the observed heterozygosity was not significantly (p < 0.05) higher than the expected heterozygosity. The Hardy Weinberg equilibrium (HWE) analysis revealed non-significant excess of heterozygote animals, indicative of plausible over-dominant selection. The pairwise FST values suggested a low genetic variation among all the breeds (FST = 0.056; p < 0.05), besides the rooting from the evolutionary or domestication history of the cattle. No detached clade was observed in the evolutionary divergence study of the BoLA-DRB3 gene, inferred from the phylogenetic tree based on the maximum likelihood model. The investigation herein indicated the clear differences in BoLA-DRB3 gene variability between African and Asian cattle breeds.

HPAI-resistant Ri chickens exhibit elevated antiviral immune-related gene expression

  • Thi Hao Vu;Jubi Heo;Yeojin Hong;Suyeon Kang;Ha Thi Thanh Tran;Hoang Vu Dang;Anh Duc Truong;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.13.1-13.11
    • /
    • 2023
  • Background: Highly pathogenic avian influenza viruses (HPAIVs) is an extremely contagious and high mortality rates in chickens resulting in substantial economic impact on the poultry sector. Therefore, it is necessary to elucidate the pathogenic mechanism of HPAIV for infection control. Objective: Gene set enrichment analysis (GSEA) can effectively avoid the limitations of subjective screening for differential gene expression. Therefore, we performed GSEA to compare HPAI-infected resistant and susceptible Ri chicken lines. Methods: The Ri chickens Mx(A)/BF2(B21) were chosen as resistant, and the chickens Mx(G)/BF2(B13) were selected as susceptible by genotyping the Mx and BF2 genes. The tracheal tissues of HPAIV H5N1 infected chickens were collected for RNA sequencing followed by GSEA analysis to define gene subsets to elucidate the sequencing results. Results: We identified four differentially expressed pathways, which were immune-related pathways with a total of 78 genes. The expression levels of cytokines (IL-1β, IL-6, IL-12), chemokines (CCL4 and CCL5), type interferons and their receptors (IFN-β, IFNAR1, IFNAR2, and IFNGR1), Jak-STAT signaling pathway genes (STAT1, STAT2, and JAK1), MHC class I and II and their co-stimulatory molecules (CD80, CD86, CD40, DMB2, BLB2, and B2M), and interferon stimulated genes (EIF2AK2 and EIF2AK1) in resistant chickens were higher than those in susceptible chickens. Conclusions: Resistant Ri chickens exhibit a stronger antiviral response to HPAIV H5N1 compared with susceptible chickens. Our findings provide insights into the immune responses of genetically disparate chickens against HPAIV.

Lactoferrin Induces Tolerogenic Bone Marrow-Derived Dendritic Cells

  • Hui-Won Park;Sun-Hee Park;Hyeon-Ju Jo;Tae-Gyu Kim;Jeong Hyun Lee;Seung-Goo Kang;Young-Saeng Jang;Pyeung-Hyeun Kim
    • IMMUNE NETWORK
    • /
    • 제20권5호
    • /
    • pp.38.1-38.12
    • /
    • 2020
  • Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that initiate both T-cell responses and tolerance. Tolerogenic DCs (tDCs) are regulatory DCs that suppress immune responses through the induction of T-cell anergy and Tregs. Because lactoferrin (LF) was demonstrated to induce functional Tregs and has a protective effect against inflammatory bowel disease, we explored the tolerogenic effects of LF on mouse bone marrow-derived DCs (BMDCs). The expression of CD80/86 and MHC class II was diminished in LF-treated BMDCs (LF-BMDCs). LF facilitated BMDCs to suppress proliferation and elevate Foxp3+ induced Treg (iTreg) differentiation in ovalbumin-specific CD4+ T-cell culture. Foxp3 expression was further increased by blockade of the B7 molecule using CTLA4-Ig but was diminished by additional CD28 stimulation using anti-CD28 Ab. On the other hand, the levels of arginase-1 and indoleamine 2,3-dioxygenase-1 (known as key T-cell suppressive molecules) were increased in LF-BMDCs. Consistently, the suppressive activity of LF-BMDCs was partially restored by inhibitors of these molecules. Collectively, these results suggest that LF effectively causes DCs to be tolerogenic by both the suppression of T-cell proliferation and enhancement of iTreg differentiation. This tolerogenic effect of LF is due to the reduction of costimulatory molecules and enhancement of suppressive molecules.

Maqui Berry Extract Activates Dendritic Cells Maturation by Increasing the Levels of Co-stimulatory Molecules and IL-12 Production

  • Ye Eun Lim;Inae Jung;Mi Eun Kim;Jun Sik Lee
    • 통합자연과학논문집
    • /
    • 제17권2호
    • /
    • pp.59-65
    • /
    • 2024
  • Dendritic cells play a very important role in the immune response as antigen-presenting cells that are critical for initiating both innate and acquired immunity. They recognize, process and present foreign antigens to other key immune cells to trigger and regulate the immune response. The ability to activate these dendritic cells can be used as a treatment for various immune diseases. Maqui berry has been reported to have anticancer, antibacterial and anti-inflammatory properties. However, its effect on the activity of dendritic cells has not been studied. In this study, we investigated the efficacy of maqui berry extract in modulating dendritic cell activity. Treatment of dendritic cells with maqui berry extract induced the costimulatory molecules CD80, CD86, and MHC class I and II in a concentration-dependent manner. Furthermore, the antigen-presenting capacity of dendritic cells was inhibited, which confirms their ability to present antigens, and the production of Interleukin (IL)-12, which is important for dendritic cell activity, was increased. These results indicated that Maqui berry extract activates dendritic cells maturation by inducing the production of co-stimulatory molecules and IL-12. These results suggest that maqui berry extract may act as an effective adjuvant to enhance dendritic cell-based immune responses.

Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines

  • Sang-Hyun Kim;Erica Espano;Bill Thaddeus Padasas;Ju-Ho Son;Jihee Oh;Richard J. Webby;Young-Ran Lee;Chan-Su Park;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • 제24권3호
    • /
    • pp.19.1-19.15
    • /
    • 2024
  • The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

고려홍삼의 수지상세포 활성화 효과 (Effects of Red-ginseng Extracts on the Activation of Dendritic Cells)

  • 김도순;박정은;서권일;고성룡;이종원;도재호;이성태
    • Journal of Ginseng Research
    • /
    • 제30권3호
    • /
    • pp.117-127
    • /
    • 2006
  • 본 연구에서는 정관장 홍삼의 물(water) extract, 식용발효 주정 extract 및 홍삼 추출물로부터 분리 제조한 crude saponin을 이용하여 면역반응을 매개하는 수지상세포의 활성 효과에 대하여 알아보았다. 그 결과 홍삼시료 중, crude saponin $100\;{\mu}g/ml$을 처리하였을 때 수지상세포의 세포표면 분자인 MHC class II, CD40, CD80, CD86의 발현이 증가하였으며, phagocytosis는 감소하였다. 또한 홍삼시료를 처리한 수지상세포와 allogeneic T세포를 함께 배양하였을 때, 홍삼시료의 물 extract, 식용발효주정 extract, crude saponin 모두 allogeneic T세포의 증식반응을 유도하였고, IL-2와 $IFN-{\gamma}$의 생산량을 증가시키는 것을 확인하였다. 또한 $CD4^+$ syngeneic T세포와 $CD8^+$ syngeneic T세포의 반응에서도 T세포의 증식반응을 높게 유도하였으며, $CD4^+$ syngeneic T세포에서 IL-2와 $IFN-{\gamma}$의 생산량을 증가시키고, $CD8^+$ syngeneic T세포에서는 $IFN-{\gamma}$ 생산량을 증가시키는 것을 확인하였다. 이상의 결과로 crude saponin의 경우 수지상세포 의 세포표면 공동자극분자의 발현을 유도하고 성숙을 유도함으로써 T세포의 활성을 증진시키는 것으로 생각되며, 물 extract와 식용발효주정 extract는 crude saponin과는 다른 기작으로 T세포 활성화를 유도하는 것을 알 수 있었다. 따라서 실험에 사용한 홍삼시료, 즉 물 extract, 식용발효주정 extract, crude saponin 모두 수지상세포의 활성을 유도하는 물질로써 암항원 특이적 T세포 활성화를 이용한 항암치료에 이용할 수 있는 가능성이 있다고 사료된다.

B형 간염 바이러스 X 항원을 면역한 A2Kb Transgenic Mice에서 CD8+ T Cell의 활성화에 의한 X 항원 표현 재조합 Vaccinia Virus에 대한 방어 효과; in vitro 배양을 통한 XEP-3 특이적인 CTL의 반응 (Protective Effects on A2Kb Transgenic Mice That Were Immunized with Hepatitis B Virus X Antigen Peptides by the Activation of CD8+ T Cells; XEP-3 Specific CTL Responses in the in vitro Culture)

  • 황유경;김형일;김남경;박정민;정홍석
    • IMMUNE NETWORK
    • /
    • 제2권1호
    • /
    • pp.41-48
    • /
    • 2002
  • Background: Viral antigens presented on the cell surface in association with MHC class I molecules are recognized by CD8+ T cells. MHC restricted peptides are important in eliciting cellular immune responses. As peptide antigens have a weak immunigenicity, pH-sensitive liposomes were used for peptide delivery to induce effective cytotoxic T lymphocyte (CTL) responses. In the previous study, as the HBx peptides could induce specific CTLs in vitro, we tested whether the HLA-A2/$K^b$ transgenic mice that were immunized by HBx-derived peptides could be protected from a viral challenge. Methods: HBx-peptides encapsulated by pH-sensitive liposomes were prepared. $A2K^b$ transgenic mice were immunized i.m. on days one and seven with the indicated concentrations of liposome-encapsulated peptides. Three weeks later, mice were infected with $1{\times}10^7pfu$/head of recombinant vaccinia virus (rVV)-HBx via i.p. administration. The ovaries were extracted from the mice, and the presence of rVV-HBx in the ovaries was analyzed using human TK-143B cells. IFN-${\gamma}$ secretion by these cells was directly assessed using a peptide-pulsed target cell stimulation assay with either peptide-pulsed antigen presenting cells (APCs), concanavalin A ($2{\mu}g/ml$), or a vehicle. To generate peptide-specific CTLs, splenocytes obtained from the immunized mice were stimulated with $20{\mu}g/ml$ of each peptide and restimulated with peptide-pulsed APC four times. The cytotoxic activity of the CTLs was assessed by standard $^{51}Cr$-release assay and intracellular IFN-${\gamma}$ assay. Results: Immunization of these peptides as a mixture in pH-sensitive liposomes to transgenic mice induced a good protective effect from a viral challenge by inducing the peptide-specific CD8+ T cells. Mice immunized with $50{\mu}g/head$ were much better protected against viral challenge compared to those immunized with $5{\mu}g$/head, whereas the mice immunized with empty liposomes were not protected at all. After in vitro CTL culture by peptide stimulation, however, specific cytotoxicity was much higher in the CTLs from mice immunized with $5{\mu}g/head$ than $50{\mu}g/head$ group. Increase of the number of cells that intracellular IFN-${\gamma}$ secreting cell among CD8+ T cells showed similar result. Conclusion: Mice immunized with XEPs within pH-sensitive liposome were protected against viral challenge. The protective effect depended on the amount of antigen used during immunization. XEP-3-specific CTLs could be induced by peptide stimulation in vitro from splenocytes obtained from immunized mice. The cytotoxic effect of CTLs was measured by $^{51}Cr$-release assay and the percentage of accumulated intracellular IFN-${\gamma}$ secreting cells after in vitro restimulation was measured by flow cytometric analysis. The result of $^{51}Cr$-release cytotoxicity test was well correlated with that of the flow cytometric analysis. Viral protection was effective in immunized group of $50{\mu}g/head$, while in the in vitro restimulation, it showed more spectific response in $5{\mu}g$/head group.

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

Epitope발현 DNA Vaccine과 Recombinant Vaccinia Virus를 이용한 Heterologous Prime-boost Vaccination에 의하여 유도되는 CD8+ T 세포 매개성 면역 (CD8+ T Cell-mediated Immunity Induced by Heterologous Prime-boost Vaccination Based on DNA Vaccine and Recombinant Vaccinia Virus Expressing Epitope)

  • 박성옥;윤현아;;이존화;채준석;어성국
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.89-98
    • /
    • 2005
  • Background: DNA vaccination represents an anticipated approach for the control of numerous infectious diseases. Used alone, however, DNA vaccine is weak immunogen inferior to viral vectors. In recent, heterologous prime-boost vaccination leads DNA vaccines to practical reality. Methods: We assessed prime-boost immunization strategies with a DNA vaccine (minigene, $gB_{498-505}$ DNA) and recombinant vaccinia virus $(vvgB_{498-505})$ expressing epitope $gB_{498-505}$ (SSIEF ARL) of CD8+ T cells specific for glycoprotein B (gB) of herpes simplex virus (HSV). Animals were immunized primarily with $gB_{498-505}$ epitope-expressing DNA vaccine/recombinant vaccinia virus and boosted with alternative vaccine type expressing entire Ag. Results: In prime-boost protocols using vvgBw (recombinant vaccinia virus expressing entire Ag) and $vvgB_{498-505}$, CD8+ T cell-mediated immunity was induced maximally at both acute and memory stages if primed with vvgBw and boosted with $vvgB_{498-505}$ as evaluated by CTL activity, intracellular IFN-staining, and MHC class I tetramer staining. Similarly $gB_{498-505}$ DNA prime-gBw DNA (DNA vaccine expressing entire Ag) boost immunization elicited the strongest CD8+ T cell responses in protocols based on DNA vaccine. However, the level of CD8+ T cell-mediated immunity induced with prime-boost vaccination using DNA vaccine expressing epitope or entire Ag was inferior to those based on vvgBw and $vvgB_{498-505}$. Of particular interest CD8+ T cell-mediated immunity was optimally induced when $vvgB_{498-505}$ was used to prime and gB DNA was used as alternative boost. Especially CD7+ T cell responses induced by such protocol was longer lasted than other protocols. Conclusion: These facts direct to search for the effective strategy to induce optimal CD8+ T cell-mediated immunity against cancer and viral infection.

아마종실과 $\alpha$-Tocopherol, 셀레늄 급여가 육계의 세포표면항원 발현에 미치는 영향 (Effects of FUll-FEat Flax Seed, $\alpha$-Tocopherol and Selenium on the Expression of cell Surface Antigen of Broiler Chickens)

  • 안종남;채현석;문진산;김동운;권명상;박병성
    • 한국가금학회지
    • /
    • 제28권3호
    • /
    • pp.231-237
    • /
    • 2001
  • 육계를 13주간 사육하면서 5주령부터 시험사료를 급여한 후 세포표면항원의 발현에 미치는 영향을 측정하기 위하여, 아마종실과 항산화제를 첨가하지 않은 대조구($T_{1}$ ), 아마종실만을 첨가한 사료($T_{2}$ ), 아마종실과 u-toco-pherol을 첨가한 사료($T_{3}$ ), 아마종실에 u-tocopherol과 셀레늄을 첨가한 사료($T_{4}$ )를 육계에 급여한 바 면역반응에 미치는 영향은 다음과 같았다. 1차 면역에 관여하는 monocyte 군은 시험사료의 급여기간이 증가할수록 $T_{1}$ 에 비하여 $T_{2}$ , $T_{3}$ , $T_{4}$ 구에서 유의적으로 증가하는 경향을 보였는데 그중 $T_{2}$ 구와 $T_{3}$ 구에서 많이 증가되었다. B세포는 시험사료의 급여기간보다는 급여사료에 따라 증가하였는데,$T_{2} , $T_{3}, $T_{4}$ 구는 $T_{1}$ 구에 비하여 2배 이상 증가하였다. CD4 양성반응(T helper cell)과 CD8 양성 세포(T $cytotoxic^pressor cell)는 $T_{2}$ , $T_{3}$ ,$T_{4}$ 구는 $T_{1}$ 구보다 증가하였으나 사료에 따라 일정한 차이는 없었다. MHC classII는 시험사료의 종류나 급여 기간에 따라 차이는 없었다.었다.

  • PDF