• Title/Summary/Keyword: MFL system

Search Result 43, Processing Time 0.021 seconds

Improvement of MFL sensing-based damage detection and quantification for steel bar NDE

  • Kim, Ju-Won;Park, Minsu;Kim, Junkyeong;Park, Seunghee
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.239-247
    • /
    • 2018
  • A magnetic flux leakage (MFL) method was applied to detect and quantify defects in a steel bar. A multi-channel MFL sensor head was fabricated using Hall sensors and magnetization yokes with permanent magnets. The MFL sensor head scanned a damaged specimen with five levels of defects to measure the magnetic flux density. A series of signal processing procedures, including an enveloping process based on the Hilbert transform, was performed to clarify the flux leakage signal. The objective damage detection of the enveloped signals was then analyzed by comparing them to a threshold value. To quantitatively analyze the MFL signal according to the damage level, five kinds of damage indices based on the relationship between the enveloped MFL signal and the threshold value were applied. Using the proposed damage indices and the general damage index for the MFL method, the detected MFL signals were quantified and analyzed relative to the magnitude of the damage increase.

Core-Tcchnology for MFL Inspection System (누설자속 측정 시스템 개발을 위한 요소기술)

  • Won, Sun-Ho;Jo, Gyeong-Sik
    • 연구논문집
    • /
    • s.30
    • /
    • pp.159-168
    • /
    • 2000
  • In this research, MFL inspection system has been studied for the inspection of storage tank floor. The reference specimens having 20%, 40%, 60% and 80% slot's are fabricated using the carbon steel plates of a 6mm and 10mm thick. Powerful permanent magnets and Hall effect sensors are used to this application. Also, this paper presents a newly developed MFL scanning system. Conclusively, it is shown that our system is able to detect metal loss like a slot.

  • PDF

Design and Implementation of MFL Data Analysis System (자기누설(MFL) 데이터 분석 시스템의 설계 및 구현)

  • Yoon, Chang-Geol;Seo, Won-Suk;Jung, Soon-Ki;Rho, Yong-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.755-760
    • /
    • 2007
  • 자기누설(MFL) 데이터는 파이프 라인을 통해 이동하는 자기누설 피그에 의해서 얻어지는 데이터이다. 자기 누설 데이터 뿐만 아니라, 이들을 각종 기법으로 분석한 데이터 역시 분석가가 직접적으로 접근하기에는 너무 복잡하며, 원시 데이터를 가지고 파이프 라인의 결함을 빠른 시간 내에 찾아내고 그 원인을 유추하기란 매우 힘든 작업이다. 이러한 불편함을 해결해 주기 위한 소프트웨어의 개발은 사용자가 가상의 파이프 라인을 따라 항해하면서, 개개의 결함이나 두드러진 특징들이 파이프 라인의 어디에 위치하는지에 관한 정보를 보다 쉽고 직관적으로 인지할 수 있게 해준다. 비단 자기누설(MFL) 데이터뿐만 아니라 이와 같은 방대한 양의 데이터를 분석하는데 있어서 가시화 시스템의 역할은 상당히 중요하다. 본 논문에서는 대용량의 데이터를 가시화하는데 있어서 필요한 여러 고려 사항들을 소개하고 각 고려 사항에 대한 해결 방안을 제시한다.

  • PDF

Research on MFL PIG Design for the Inspection of Underground Gas Pipeline (지하매설 가스관의 검사를 위한 누설자속탐상 PIG 설계에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.177-186
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects in underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.

A Study on Determining the Shape of Small Axial Cracks by using Magnetic Flux Leakage in NDT System for Underground Pipe (배관용 자기누설 비파괴 검사에서 축방향 미소결함의 형상 판정에 관한 연구)

  • Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • MFL PIG (Magnetic Flux Leakage Pipeline Inspection Gauge) is called the system which detects the defect for underground pipelines by using magnetic flux leakage method in nondestructive testing. This method is very suitable for testing pipelines because pipeline has high magnetic permeability. MFL PIG generates the magnetic fields to the pipe axially oriented, and detect the signal of leakage flux by using hall sensor. However, MFL PIG is hard to detect the axially oriented crack with small size because the magnetic flux leakage is not enough to be occurred. To detect the small size and axially oriented crack, the circumferential MFL (CMFL) PIG is being proposed and it can maximize the leakage flux for the axial crack by performing magnetic fields circumferentially on the pipe. In this paper, CMFL PIG is applied to detect the axially oriented crack with small size and the analysis for the distribution and the amplitude of the leakage flux signal is performed by using three dimensional finite element method. From sensing signals, the method how to determine the shape of axially oriented cracks is proposed and verified with experiment.

Effects of the PIG Draft Velocity on the Defect Signals in MFL NDT System (자기 누설 비파괴 탐상 시스템에서 PIG의 주행속도가 검출신호에 미치는 영향)

  • 박상호;박관수
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.475-483
    • /
    • 2003
  • In this paper, dynamic characteristics of the magnetic flux leakage(MFL) type non-destructive testing(NDT) are analyzed. Effects of a sensor speed in MFL PIG system and remanent magnetization of the gas pipeline are analyzed by using 3 dimensional nonlinear finite element analysis including eddy current and hysteresis characteristics. Results show that the speed of the sensor reduces the magnitude of the sensing signals where as the hysteresis of the pipeline distorts the sensing signals.

Research on MFL PIG Design for caustic and defect the Inspection of Underground Gas Pipeline (지하매설 가스관의 부식 및 결함 탐지를 위한 비파괴 누설 탐상시스템 개발에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.11-20
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects on underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.

  • PDF

A Study on the Method of Magnetic Flux Leakage NDTfor Detecting Axial Cracks (축방향 미소결함 검출을 위한 자기누설 비파괴 검사 방법에 관한 연구)

  • Yun, Seung-Ho;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • From among the NDT (nondestructive testing) methods, the MFL (magnetic flux leakage) method is specially suitable for testing pipelines because pipeline has high magnetic permeability. The system applied to MFL method is called the MFL PIG. The previous MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is highly unlikely to detect the cracks which occur by exterior-interior pressure difference in pipelines and the shape of crack is long and very narrow. In MFL PIG, the magnetic field is performed axially and there is no changes of cross-sectional area at cracks that the magnetic field passes through. Cracks occur frequently in the pipelines and the risk of the accident from the cracks is higher than that from the metal loss and corrosions. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The circumferential MFL (CMFL) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). In CMFL PIG, cracks, standards of NACE, are detectable. To estimate the shape of crack, the leakage of magnetic fields for many kinds of cracks is analyzed and the method is developed by signal processing.

Optimum Design of a Non-Destructive Testing System to Maximize Magnetic Flux Leakage

  • Park, G.S;Jang, P.W;Rho, Y.W
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • This paper describes the design method of a magnetic system to maximize the magnetic flux leakage (MFL) in a non-destructive testing (NDT) system. The defect signals in a MFL type NDT system mainly depend on the change of the magnetic leakage flux in the region of a defect. The characteristics of the B-H curves are analysed and a design method to define the operating point on B-H curves for maximum leakage is performed. The computed MFL signal by a nonlinear finite element method is verified by measurement using Hall sensors mounted on the 6 legs PIG, the traveling detector unit in gas pipe, in an 8 inch test tube with defects. The rhombic defects could be successfully identified from the defect signals.

  • PDF

Optimum Design of the Non-Destructive Testing System to Maximize the Magnetic Flux Leakages

  • Park, G. S.;P. W. Jang;Park, Y. W.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.539-545
    • /
    • 2000
  • This paper describes the design method of the magnetic system to maximize the magnetic flux leakage (MFL) in non-destructive testing (NDT) system. The defect signals in MFL type NDT system mainly depends on the change of the magnetic leakage flux in the region of defect. The characteristics of the B-H curves are analyzed and the design method to define the operating point in B-H curves for the maximum leakage is performed. The computed MFL signal by nonlinear finite element method is verified by measurement using Hall sensors mounted on the 6 legs PIG in the 8 inches test tube with defects. The rhombic defects could be successfully composed from the defect signals.

  • PDF