Journal of the Korea Society of Computer and Information
/
v.13
no.3
/
pp.99-106
/
2008
Recently, digital music retrieval is using in many fields (Web portal. audio service site etc). In existing fields, Meta data of music are used for digital music retrieval. If Meta data are not right or do not exist, it is hard to get high accurate retrieval result. Contents based information retrieval that use music itself are researched for solving upper problem. In this paper, we propose Same music recognition method using similarity measurement. Feature data of digital music are extracted from waveform of music using Simplified MFCC (Mel Frequency Cepstral Coefficient). Similarity between digital music files are measured using DTW (Dynamic time Warping) that are used in Vision and Speech recognition fields. We success all of 500 times experiment in randomly collected 1000 songs from same genre for preying of proposed same music recognition method. 500 digital music were made by mixing different compressing codec and bit-rate from 60 digital audios. We ploved that similarity measurement using DTW can recognize same music.
Park, Jin-Young;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.2
/
pp.469-472
/
2005
This paper propose about effective speech feature parameter that have robust character in effect of noise in realizing speech recognition system. Established MFCC that is the basic parameter used to ASR(Automatic Speech Recognition) and DCTCs that use DCT in basic parameter. Also, proposed delta-Cepstrum and delta-delta-Cepstrum parameter that reconstruct Cepstrum to have information for variation of speech. And compared recognition performance in using HMM. For dimension reduction of each parameter LDA algorithm apply and compared recognition. Results are presented reduced dimension delta-delta-Cepstrum parameter in using LDA recognition performance that improve more than existent parameter in noise environment of various condition.
Journal of the Korea Society of Computer and Information
/
v.26
no.9
/
pp.57-64
/
2021
In this paper, we propose a device that can control the primary control surface of an aircraft by recognizing speech commands. The speech command consists of 19 commands, and a learning model is constructed based on a total of 2,500 datasets. The training model is composed of a CNN model using the Sequential library of the TensorFlow-based Keras model, and the speech file used for training uses the MFCC algorithm to extract features. The learning model consists of two convolution layers for feature recognition and Fully Connected Layer for classification consists of two dense layers. The accuracy of the validation dataset was 98.4%, and the performance evaluation of the test dataset showed an accuracy of 97.6%. In addition, it was confirmed that the operation was performed normally by designing and implementing a Raspberry Pi-based control device. In the future, it can be used as a virtual training environment in the field of voice recognition automatic flight and aviation maintenance.
Due to COVID-19, the importance of non-face-to-face counseling is increasing as the face-to-face counseling method has progressed to non-face-to-face counseling. The advantage of non-face-to-face counseling is that it can be consulted online anytime, anywhere and is safe from COVID-19. However, it is difficult to understand the client's mind because it is difficult to communicate with non-verbal expressions. Therefore, it is important to recognize emotions by accurately analyzing text and voice in order to understand the client's mind well during non-face-to-face counseling. Therefore, in this paper, text data is vectorized using FastText after separating consonants, and voice data is vectorized by extracting features using Log Mel Spectrogram and MFCC respectively. We propose a multi-emotion recognition model that recognizes five emotions using vectorized data using an LSTM model. Multi-emotion recognition is calculated using RMSE. As a result of the experiment, the RMSE of the proposed model was 0.2174, which was the lowest error compared to the model using text and voice data, respectively.
Hyun Taek Lim;Soo Hyung Kim;Guee Sang Lee;Hyung Jeong Yang
Smart Media Journal
/
v.12
no.5
/
pp.28-35
/
2023
In this study, we propose a new light-weight model RoutingConvNet with fewer parameters to improve the applicability and practicality of speech emotion recognition. To reduce the number of learnable parameters, the proposed model connects bidirectional MFCCs on a channel-by-channel basis to learn long-term emotion dependence and extract contextual features. A light-weight deep CNN is constructed for low-level feature extraction, and self-attention is used to obtain information about channel and spatial signals in speech signals. In addition, we apply dynamic routing to improve the accuracy and construct a model that is robust to feature variations. The proposed model shows parameter reduction and accuracy improvement in the overall experiments of speech emotion datasets (EMO-DB, RAVDESS, and IEMOCAP), achieving 87.86%, 83.44%, and 66.06% accuracy respectively with about 156,000 parameters. In this study, we proposed a metric to calculate the trade-off between the number of parameters and accuracy for performance evaluation against light-weight.
In this paper, we compared speaker verification performance of the speech data collected in clean environment and in channel environment. For the improvement of the performance of speaker verification gathered in channel, we have studied on the efficient feature parameters in channel environment and on the preprocessing. Speech DB for experiment is consisted of Korean doublet of numbers, considering the text-prompted system. Speech features including LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair) are analyzed. Also, the preprocessing of filtering to remove channel noise is studied. To remove or compensate for the channel effect from the extracted features, cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl) are applied. Also by presenting the speech recognition performance on each features and the processing, we compared speech recognition performance and speaker verification performance. For the evaluation of the applied speech features and processing methods, HTK(HMM Tool Kit) 2.0 is used. Giving different threshold according to male or female speaker, we compare EER(Equal Error Rate) on the clean speech data and channel data. Our simulation results show that, removing low band and high band channel noise by applying band pass filter(150~3800Hz) in preprocessing procedure, and extracting MFCC from the filtered speech, the best speaker verification performance was achieved from the view point of EER measurement.
Journal of the Korea Society of Computer and Information
/
v.16
no.12
/
pp.187-196
/
2011
Induction motors play a vital role in aeronautical and automotive industries so that many researchers have studied on developing a fault detection and classification system of an induction motor to minimize economical damage caused by its fault. With this reason, this paper extracts robust feature vectors from the normal/abnormal vibration signals of the induction motor in noise circumstance: partial autocorrelation (PARCOR) coefficient, log spectrum powers (LSP), cepstrum coefficients mean (CCM), and mel-frequency cepstrum coefficient (MFCC). Then, we classified different types of faults of the induction motor by using the extracted feature vectors as inputs of a neural network. To find optimal feature vectors, this paper evaluated classification performance with 2 to 20 different feature vectors. Experimental results showed that five to six features were good enough to give almost 100% classification accuracy except features by CCM. Furthermore, we considered that vibration signals could include noise components caused by surroundings. Thus, we added white Gaussian noise to original vibration signals, and then evaluated classification performance. The evaluation results yielded that LSP was the most robust in noise circumstance, then PARCOR and MFCC followed by LSP, respectively.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.3
/
pp.114-123
/
2016
The effective feature extraction method for unmanned aerial vehicle (UAV) detection is proposed and verified in this paper. The UAV engine sound is harmonic complex tone whose frequency ratio is integer and its variation is continuous in time. Using these characteristic, we propose the feature vector composed of a mean and standard deviation of difference value between fundamental frequency with 1st overtone as well as mean variation of their frequency. It was revealed by simulation that the suggested feature vector has excellent discrimination in target signal identification from various interfering signals including frequency variation with time. By comparing Fisher scores, three features based on frequency show outstanding discrimination of measured UAV signals with low signal to noise ratio (SNR). Detection performance with simulated interference signal is compared by MFCC by using ELM classifier and the suggested feature vector shows 37.6% of performance improvement As the SNR increases with time, the proposed feature can detect the target signal ahead of MFCC that needs 4.5 dB higher signal power to detect the target.
Journal of the Institute of Convergence Signal Processing
/
v.7
no.3
/
pp.116-121
/
2006
In this paper, we propose the dimension reduction method of multi-dimension speech feature vector for real-time adaptation procedure in various noisy environments. This method which reduces dimensions non-linearly to map the likelihood of speech feature vector and noise feature vector. The LRT(Likelihood Ratio Test) is used for classifying speech and non-speech. The results of implementation are similar to multi-dimensional speech feature vector. The results of speech recognition implementation of detected speech data are also similar to multi-dimensional(10-order dimensional MFCC(Mel-Frequency Cepstral Coefficient)) speech feature vector.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.3
/
pp.195-200
/
2004
In this paper we propose effective speech recognizer through two recognition experiments. In general, SVM is classification method which classify two class set by finding voluntary nonlinear boundary in vector space and possesses high classification performance under few training data number. In this paper we compare recognition performance of HMM and SVM at training data number and investigate recognition performance of each feature parameter while changing feature space of MFCC using Independent Component Analysis(ICA) and Principal Component Analysis(PCA). As a result of experiment, recognition performance of SVM is better than 1:.um under few training data number, and feature parameter by ICA showed the highest recognition performance because of superior linear classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.