• 제목/요약/키워드: MEPC

검색결과 75건 처리시간 0.02초

Bench-scale 선박용 STP 장치에서 C : N : P 비율에 따른 인의 처리효율 비교에 대한 연구 (A Study on the Comparison of Phosphorous Removal Efficiency with C : N : P Ratio for Bench-scales STP)

  • 최영익;지현조;신대열;사나 만수르;이승철;정진희
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.53-59
    • /
    • 2018
  • Water pollution is drastically increasing day by day, because of the enhancement in use of livestock, urban sewage detergents and fertilizers. Moreover increase in concentration of phosphorous and nitrogen contained in sewage, leads to green tide problem in the rivers and causes marine pollution. For this problem to solve, several technologies are being researched and developed. Among them, this experiment is a study on Bench-scale STP based on internationally certified sewage treatment equipment by MEPC. 227(64) of IMO. The purpose of this study is to compare the biological treatment efficiency of phosphorus of Bench-scale STP. The ratio of C : N : P was set to 10 : 5 : 3 and 10 : 3 : 1 as the operating conditions. And the operation cycle was set to anoxic(mixed) 70 min - aeration 50 min (70-50), anoxic(mixed) 90 min - aeration 60 min (90-60). As a result, the phosphorous treatment efficiency was 88% at average, and the treatment efficiency was steady at 90-60 better than 70-50. The efficiency of the bench-scale STP has been verified through this experiment and additional experiments are required to derive the optimal operating conditions.

토양 및 지하수 Investigation 과 Remediation에 대한 현장적용

  • Wallner, Heinz
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.44-63
    • /
    • 2000
  • Situated close to Heathrow Airport, and adjacent to the M4 and M25 Motorways, the site at Axis Park is considered a prime location for business in the UK. In consequnce two of the UK's major property development companies, MEPC and Redrew Homes sought the expertise of Intergeo to remediate the contaminated former industrial site prior to its development. Industrial use of the twenty-six hectare site, started in 1936, when Hawker Aircraft commence aircraft manufacture. In 1963 the Firestone Tyre and Rubber Company purchased part of the site. Ford commenced vehicle production at the site in the mid-1970's and production was continued by Iveco Ford from 1986 to the plant's decommissioning in 1997. Geologically the site is underlain by sand and gravel, deposited in prehistory by the River Thames, with London Clay at around 6m depth. The level of groundwater fluctuates seasonally at around 2.5m depth, moving slowly southwest towards local streams and watercourses. A phased investigation of the site was undertaken, which culminated in the extensive site investigation undertaken by Intergeo in 1998. In total 50 boreholes, 90 probeholes and 60 trial pits were used to investigate the site and around 4000 solid and 1300 liquid samples were tested in the laboratory for chemical substances. The investigations identified total petroleum hydrocarbons in the soil up to 25, 000mg/kg. Diesel oil, with some lubricating oil were the main components. Volatile organic compounds were identified in the groundwater in excess of 10mg/l. Specific substances included trichloromethane, trichloromethane and tetrachloroethene. Both the oil and volatile compounds were widely spread across the site, The specific substances identified could be traced back to industrial processes used at one or other dates in the sites history Slightly elevated levels of toxic metals and polycyclic aromatic hydrocarbons were also identified locally. Prior to remediation of the site and throughout its progress, extensive liaison with the regulatory authorities and the client's professional representatives was required. In addition to meetings, numerous technical documents detailing methods and health and safety issues were required in order to comply with UK environmental and safety legislation. After initially considering a range of options to undertake remediation, the following three main techniques were selected: ex-situ bioremediation of hydrocarbon contaminated soils, skimming of free floating hydrocarbon product from the water surface at wells and excavations and air stripping of volatile organic compounds from groundwater recovered from wells. The achievements were as follows: 1) 350, 000m3 of soil was excavated and 112, 000m3 of sand and gravel was processed to remove gravel and cobble sized particles; 2) 53, 000m3 of hydrocarbon contaminated soil was bioremediated in windrows ; 3) 7000m3 of groundwater was processed by skimming to remove free floating Product; 4) 196, 000m3 of groundwater was Processed by air stripping to remove volatile organic compounds. Only 1000m3 of soil left the site for disposal in licensed waste facilities Given the costs of disposal in the UK, the selected methods represented a considerable cost saving to the Clients. All other soil was engineered back into the ground to a precise geotechnical specification. The following objective levels were achieved across the site 1) By a Risk Based Corrective Action (RBCA) methodology it was demonstrated that soil with less that 1000mg/kg total petroleum hydrocarbons did not pose a hazard to health or water resources and therefore, could remain insitu; 2) Soils destined for the residential areas of the site were remediated to 250mg/kg total petroleum hydrocarbons; in the industrial areas 500mg/kg was proven acceptable. 3) Hydrocarbons in groundwater were remediated to below the Dutch Intervegtion Level of 0.6mg/1; 4) Volatile organic compounds/BTEX group substances were reduced to below the Dutch Intervention Levels; 5) Polycyclic aromatic hydrocarbons and metals were below Inter-departmental Committee for the Redevelopment of Contaminated Land guideline levels for intended enduse. In order to verify the qualify of the work 1500 chemical test results were submitted for the purpose of validation. Quality assurance checks were undertaken by independent consultants and at an independent laboratory selected by Intergeo. Long term monitoring of water quality was undertaken for a period of one year after remediation work had been completed. Both the regulatory authorities and Clients representatives endorsed the quality of remediation now completed at the site. Subsequent to completion of the remediation work Redrew Homes constructed a prestige housing development. The properties at "Belvedere Place" retailed at premium prices. On the MEPC site the Post Office, amongst others, has located a major sorting office for the London area. Exceptionally high standards of remediation, control and documentation were a requirement for the work undertaken here.aken here.

  • PDF

Investigation of Applying Technical Measures for Improving Energy Efficiency Design Index (EEDI) for KCS and KVLCC2

  • Jun-Yup Park;Jong-Yeon Jung;Yu-Taek Seo
    • 한국해양공학회지
    • /
    • 제37권2호
    • /
    • pp.58-67
    • /
    • 2023
  • While extensive research is being conducted to reduce greenhouse gases in industrial fields, the International Maritime Organization (IMO) has implemented regulations to actively reduce CO2 emissions from ships, such as energy efficiency design index (EEDI), energy efficiency existing ship index (EEXI), energy efficiency operational indicator (EEOI), and carbon intensity indicator (CII). These regulations play an important role for the design and operation of ships. However, the calculation of the index and indicator might be complex depending on the types and size of the ship. Here, to calculate the EEDI of two target vessels, first, the ships were set as Deadweight (DWT) 50K container and 300K very large crude-oil carrier (VLCC) considering the type and size of those ships along with the engine types and power. Equations and parameters from the marine pollution treaty (MARPOL) Annex VI, IMO marine environment protection committee (MEPC) resolution were used to estimate the EEDI and their changes. Technical measures were subsequently applied to satisfy the IMO regulations, such as reducing speed, energy saving devices (ESD), and onboard CO2 capture system. Process simulation model using Aspen Plus v10 was developed for the onboard CO2 capture system. The obtained results suggested that the fuel change from Marine diesel oil (MDO) to liquefied natural gas (LNG) was the most effective way to reduce EEDI, considering the limited supply of the alternative clean fuels. Decreasing ship speed was the next effective option to meet the regulation until Phase 4. In case of container, the attained EEDI while converting fuel from Diesel oil (DO) to LNG was reduced by 27.35%. With speed reduction, the EEDI was improved by 21.76% of the EEDI based on DO. Pertaining to VLCC, 27.31% and 22.10% improvements were observed, which were comparable to those for the container. However, for both vessels, additional measure is required to meet Phase 5, demanding the reduction of 70%. Therefore, onboard CO2 capture system was designed for both KCS (Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship) and KVLCC2 (KRISO VLCC) to meet the Phase 5 standard in the process simulation. The absorber column was designed with a diameter of 1.2-3.5 m and height of 11.3 m. The stripper column was 0.6-1.5 m in diameter and 8.8-9.6 m in height. The obtained results suggested that a combination of ESD, speed reduction, and fuel change was effective for reducing the EEDI; and onboard CO2 capture system may be required for Phase 5.

인천항의 선박오염원에서 배출된 대기오염물질의 확산 (Dispersion of Air Pollutants from Ship Based Sources in Incheon Port)

  • 김광호;권병혁;김민성;이돈출
    • 해양환경안전학회지
    • /
    • 제23권5호
    • /
    • pp.488-496
    • /
    • 2017
  • 선박의 오염물질 배출에 대한 규제는 최근 IMO/MEPC(국제해사기구/해양환경보호위원회)를 통해서 진행 중이다. 선박오염원에서 배출된 오염물질은 국지적인 요인에 의해서 연안지역을 비롯하여 육지로 확산될 수 있다. 인천과 같이 선박 배출 오염물질에 노출되어 있는 항구 도시에서 선박오염원 조절은 연안지역의 대기질 관리정책을 효율적으로 고안하기 위해서 반드시 필요하다. 연안지역의 대기오염물질 중 선박에 의한 NOx와 SOx의 농도는 전체 NOx와 SOx 농도의 각각 14 %와 10 %를 차지한다(NIER, 2008). 연안도시지역의 대기질은 국지적인 순환에 의존하는 오염물질의 확산 경향과 선박의 수에 영향을 받는다. 선박오염원으로부터 배출된 오염물질의 확산을 WRF(Weather Research and Forecasting model)의 기상장을 기초로 CALPUFF(California Puff model)를 사용하여 분석하였다. 그리고 연안도시지역의 대기확산모델은 정박한 선박과 입 출항하는 선박으로 나누어 각각 점오염원과 선오염원으로 구분하여 모의하였다. 선박척수 82~84척을 기준으로 NOx의 총 평균 배출량은 입 출항시 각각 6.2 g/s, 6.8 g/s이었고, SOx의 총 평균 배출량은 입 출항시 각각 3.6 g/s, 5.1 g/s 이었다. 정박 중인 선박의 NOx와 SOx에 대한 총 평균 배출량은 각각 0.77 g/s, 1.93 g/s이었다. 육풍의 영향으로 인하여 인천항으로부터 내륙으로 진행되는 오염물질의 수송이 억제되었고, 내륙의 SOx와 NOx 농도가 일시적으로 감소하는 원인이 되었다. 해풍에 의해 NOx와 SOx가 내륙으로 확산되었고, 내륙의 NOx와 SOx의 농도가 점차 증가하였다. 인천항과 인접한 지역의 오염물질의 농도는 해륙풍의 영향보다 인천항에 정박 중인 선박오염원에 의한 영향이 더욱 크게 반영되었다. 본 연구는 연안도시지역의 대기질 정책고안과 배출기준을 정하는 것에 유용할 것으로 기대된다.

화물잔류물의 해양 투입처분(배출) 사안에 대한 법률적 분석 (A Leg Analysis on the Discharge of Cargo Residue at Sea)

  • 홍기훈;박찬호
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제9권4호
    • /
    • pp.193-202
    • /
    • 2006
  • 선박이나 해양구조물(海洋構造物)로부터의 폐기물(廢棄物)의 해양투기를 규제하는 런던협약(協約) 당사국들은 지난 2004년 동 협약 당사국회의에서 선박으로부터 화물관련폐기물의 배출을 허용하는 국제규범이 국가별로 다양하게 해석되고 있어서 이로 인해 해양환경이 손상 받을 가능성에 주목하였다. 런던협약 당사국회의는 런던협약과 선박으로부터의 폐기물의 배출을 관장하는 MARPOL 73/78 (부속서 V)의 두 국제규범간의 "폐기물의 해양배출 및 투기에 관한 사안" 관할범위를 명확하게 구분하기 위해 MARPOL 73/78을 관장하는 국제해사기구의 해양환경위원회와 공동 작업반을 구성하였다. 화물(貨物)관련폐기물의 해양처분에 관한 규제는 국가별로 달라서, 일부 국가들은 해양처분을 허용하지 않고 대신 항만폐기물수용시설에 배출하도록 하고 있으나 일부 국가들은 해양에 배출할 수 있도록 허용하고 있다. 국제적으로는 런던협약 등 다자간환경협정(多者間環境協定)들은 대안이 있는 경우에는 환경규제를 강화하는 경향을 보이고 있다. 본 소고는 이러한 국제적인 논의 동향에 대처하고 우리나라 해양환경보전을 위하여 화물관련폐기물 중 화물잔류물을 대상으로 먼저 선박으로부터의 폐기물의 배출을 규율하는 법제에 대해 고찰하고, 화물관련폐기물의 해양처분으로 인한 해양환경영향을 구체적으로 검토하기 위하여 화물잔류물 중 산적화물(散積貨物)인 석탄의 선창 잔류물의 해양처분에 대한 환경영향을 사례로서 분석하였다. 화물잔류물의 해양투입처분으로 인한 해양환경영향은 화물잔류물의 총량과 동 화물잔류물에 함유된 유해물질의 종류와 함량에 의하여 결정되게 된다. 해양환경보전을 위하여서는 화물잔류물을 해양에 투입처분하지 않는 것이 최상의 관리 방안이다. 따라서 화물잔류물의 해양처분 수요는 항만폐기물수용시설의 가용성에 반비례하게 된다. 우리나라도 항만폐기물수용시설을 추가적으로 확충하여 선박기인 운영으로 인한 해양환경오염을 감축하여 나가야 할 것이다.

  • PDF