• Title/Summary/Keyword: MEMS Acceleration Sensor

Search Result 48, Processing Time 0.028 seconds

Development of a single-structured MEMS gyro-accelerometer

  • Sung, Woon-Tahk;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.592-595
    • /
    • 2004
  • This paper presents a study on the development of a multi-sensing inertial sensor with a single mechanical structure, which can be used both as a gyroscope and an accelerometer. The proposed MEMS gyro-accelerometer is designed to detect the angular rate and the acceleration at the same time using two separate detection circuits for one proof mass. In this study, the detection and signal processing circuit for an effective signal processing of different inertial measurements is designed, fabricated, and tested. The experimental results show that the performances of the gyro-accelerometer have resolutions of 1mg and 0.025deg/sec and nonlinearities of less than 0.5% for the accelerometer and the gyroscope, respectively, which are similar results with those of sensors with different structures and different detection circuits. The size of the sensor is reduced almost by 50% comparing with the sensors of separated proof mass.

  • PDF

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

Study of the Respiratory Monitoring System by Using the MEMS Acceleration Sensor (MEMS 가속도 센서를 이용한 환자 호흡동작 모니터링 체계 연구)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Kim, Dong Wook;Shin, Dong Oh
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.61-67
    • /
    • 2013
  • In this study, we developed and evaluated the patient respiration training method which can help to avoid the problems for the limitation of RGRT applicable patient cases. By using the MEMS (micro-electro-mechanical-system) acceleration sensor, we measured movement of motion phantom. We had compared the response of MEMS with commercially introduced real time patient monitoring (RPM) system. We measured the response of the MEMS with 1 dimensional motion phantom movement for 2.5, 3.0, 3.5 second of period and the 2.0, 3.0, 4.0 cm of the amplitudes. The measured period error of the MEMS system was 0.6~6.0% compared with measured period using RPM system. We found that the shape of MEMS signals were similar with RPM system. From this study, we found the possibility of MEMS as patient training system.

Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting (미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

Comparative Analysis of Seismic Records Observed at Seismic Stations and Smartphone MEMS Sensors (지진관측소와 스마트폰 MEMS 센서 기록의 비교분석)

  • Jang, Dongil;Ahn, Jae-Kwang;Kwon, Youngwoo;Kwak, Dongyoup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.513-522
    • /
    • 2021
  • A smartphone (SMP) includes a MEMS sensor that can record 3-components motions and has a wireless network device to transmit data in live. These features and relatively low maintenance costs are the advantage of using SMPs as an auxiliary seismic observation network. Currently, 279 SMPs are monitoring seismic motions. In this study, we compare the SMP records with the seismic station (SS) records to validate SMP records. The data used for comparison are records for five earthquakes that occurred in 2019, which are 321 SS data recorded by the Korea Meteorological Administration and the Korea Institute of Geoscience and Mineral Resources and 145 recorded by SMPs. The analysis shows that the event-term corrected average residual of the SMP MEMS sensor records is 0.59 which indicating that the peak horizontal acceleration by SMP is 1.8 factor bigger than the peak ground acceleration by SS. In addition, the residuals tend to decrease as the installation floor of the smartphone MEMS sensor increases, which is the similar trend with response spectra from SS.

Reliability Assessment and Improvement of MEMS Vacuum Package with Accelerated Degradation Test (ADT) (가속열화시험을 적용한 MEMS 진공패키지의 신뢰성 분석 및 개선)

  • 최민석;김운배;정병길;좌성훈;송기무
    • Journal of Applied Reliability
    • /
    • v.3 no.2
    • /
    • pp.103-116
    • /
    • 2003
  • We carry out reliability tests and investigate the failure mechanisms. of the wafer level vacuum packaged MEMS gyroscope sensor using an accelerated degradation test. The accelerated degradation test (ADT) is used to evaluate reliability (and/or life) of the MEMS vacuum package and to select the accelerated test conditions, which reduce the reliability testing time. Using the failure distribution model and stress-life model, we are able to estimate the average life time of the vacuum package, which is well agreed with the measured data. After improving several package reliability issues such as prevention of gas diffusion through package, we carry out another set of accelerated tests at the chosen acceleration level. The results show that reliability of the vacuum packaged gyroscope has been greatly improved and can survive without degradation of performance, which is the Q-factor in gyroscope sensor, during environmental stress reliability tests.

  • PDF

Recent Trends in Human Motion Detection Technology and Flexible/stretchable Physical Sensors: A Review

  • Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.391-396
    • /
    • 2017
  • Human body motion detection is important in several industry sectors, such as entertainment, healthcare, rehabilitation, and so on. In this paper, we first discuss commercial human motion detection technologies (optical markers, MEMS acceleration sensors, infrared imaging, etc.) and then explain recent advances in the development of flexible and stretchable strain sensors for human motion detection. In particular, flexible and stretchable strain sensors that are fabricated using carbon nanotubes, silver nanowires, graphene, and other materials are reviewed.

Non-invasive acceleration-based methodology for damage detection and assessment of water distribution system

  • Shinozuka, Masanobu;Chou, Pai H.;Kim, Sehwan;Kim, Hong Rok;Karmakar, Debasis;Fei, Lu
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.545-559
    • /
    • 2010
  • This paper presents the results of a pilot study and verification of a concept of a novel methodology for damage detection and assessment of water distribution system. The unique feature of the proposed noninvasive methodology is the use of accelerometers installed on the pipe surface, instead of pressure sensors that are traditionally installed invasively. Experimental observations show that a sharp change in pressure is always accompanied by a sharp change of pipe surface acceleration at the corresponding locations along the pipe length. Therefore, water pressure-monitoring can be transformed into acceleration-monitoring of the pipe surface. The latter is a significantly more economical alternative due to the use of less expensive sensors such as MEMS (Micro-Electro-Mechanical Systems) or other acceleration sensors. In this scenario, monitoring is made for Maximum Pipe Acceleration Gradient (MPAG) rather than Maximum Water Head Gradient (MWHG). This paper presents the results of a small-scale laboratory experiment that serves as the proof of concept of the proposed technology. The ultimate goal of this study is to improve upon the existing SCADA (Supervisory Control And Data Acquisition) by integrating the proposed non-invasive monitoring techniques to ultimately develop the next generation SCADA system for water distribution systems.

Real-time Feedback Vibration Control of Structures Using Wireless Acceleration Sensor System - System Design and Basic Performance Evaluation - (무선 가속도센서 시스템을 이용한 건축물의 실시간 피드백 진동제어 - 시스템 구축 및 기초성능 평가 -)

  • Jeon, Joon Ryong;Park, Ki Tae;Lee, Chin Ok;Heo, Gwang Hee;Lee, Woo Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.21-32
    • /
    • 2013
  • This is a preliminary study for the real-time feedback vibration control of building structures. The study developed a wireless acceleration sensor system based on authentic technology capacities, to integrate with the Prototype AMD system and ultimately construct the feedback vibration control system. These systems were used to evaluate the basic performance levels of the control systems within model building structures. For this purpose, the study first developed a wireless acceleration sensor unit that integrates an MEMS sensor device and bluetooth communication module. Also, the study developed an operating program that enables control output based on real-time acceleration response measurement and control law. Furthermore, the Prototype AMD and motor driver system were constructed to be maneuvered by the AC servo-motor. Eventually, all these compositions were used to evaluate the real-time feedback vibration control system of a 2-story model building, and qualitatively measure the extent of vibrational reduction of the target structure within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within 1st and 2nd resonance frequency as well as the random frequency of the model building structure. Ultimately, this study confirmed the potential of its wireless acceleration sensor system and AMD system as an effective tool that can be applied to the active vibration control of other structures.

CMOS ROIC for MEMS Acceleration Sensor (MEMS 가속도센서를 위한 CMOS Readout 회로)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • This paper presents a CMOS readout circuit for MEMS(Micro Electro Mechanical System) acceleration sensors. It consists of a MEMS accelerometer, a capacitance to voltage converter(CVC) and a second-order switched-capacitor ${\Sigma}{\Delta}$ modulator. Correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques are used in the CVC and ${\Sigma}{\Delta}$ modulator to reduce the low-frequency noise and DC offset. The sensitivity of the designed CVC is 150mV/g and its non-linearity is 0.15%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 10% when the input voltage amplitude increases by 100mV, and the modulator's non-linearity is 0.45%. The total sensitivity is 150mV/g and the power consumption is 5.6mW. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V and a operating frequency of 2MHz. The size of the designed chip including PADs is $0.96mm{\times}0.85mm$.