• Title/Summary/Keyword: MEMD

Search Result 4, Processing Time 0.018 seconds

Multi-variate Empirical Mode Decomposition (MEMD) for ambient modal identification of RC road bridge

  • Mahato, Swarup;Hazra, Budhaditya;Chakraborty, Arunasis
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.283-294
    • /
    • 2020
  • In this paper, an adaptive MEMD based modal identification technique for linear time-invariant systems is proposed employing multiple vibration measurements. Traditional empirical mode decomposition (EMD) suffers from mode-mixing during sifting operations to identify intrinsic mode functions (IMF). MEMD performs better in this context as it considers multi-channel data and projects them into a n-dimensional hypercube to evaluate the IMFs. Using this technique, modal parameters of the structural system are identified. It is observed that MEMD has superior performance compared to its traditional counterpart. However, it still suffers from mild mode-mixing in higher modes where the energy contents are low. To avoid this problem, an adaptive filtering scheme is proposed to decompose the interfering modes. The Proposed modified scheme is then applied to vibrations of a reinforced concrete road bridge. Results presented in this study show that the proposed MEMD based approach coupled with the filtering technique can effectively identify the parameters of the dominant modes present in the structural response with a significant level of accuracy.

Time-Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Birth

  • Ryu, Jiwoo;Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this paper, a novel method for the classification of term and preterm birth is proposed based on time-frequency analysis of electrohysterogram (EHG) using multivariate empirical mode decomposition (MEMD). EHG is a promising study for preterm birth prediction, because it is low-cost and accurate compared to other preterm birth prediction methods, such as tocodynamometry (TOCO). Previous studies on preterm birth prediction applied prefilterings based on Fourier analysis of an EHG, followed by feature extraction and classification, even though Fourier analysis is suboptimal to biomedical signals, such as EHG, because of its nonlinearity and nonstationarity. Therefore, the proposed method applies prefiltering based on MEMD instead of Fourier-based prefilters before extracting the sample entropy feature and classifying the term and preterm birth groups. For the evaluation, the Physionet term-preterm EHG database was used where the proposed method and Fourier prefiltering-based method were adopted for comparative study. The result showed that the area under curve (AUC) of the receiver operating characteristic (ROC) was increased by 0.0351 when MEMD was used instead of the Fourier-based prefilter.

Estimation of Brain Connectivity during Motor Imagery Tasks using Noise-Assisted Multivariate Empirical Mode Decomposition

  • Lee, Ki-Baek;Kim, Ko Keun;Song, Jaeseung;Ryu, Jiwoo;Kim, Youngjoo;Park, Cheolsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1812-1824
    • /
    • 2016
  • The neural dynamics underlying the causal network during motor planning or imagery in the human brain are not well understood. The lack of signal processing tools suitable for the analysis of nonlinear and nonstationary electroencephalographic (EEG) hinders such analyses. In this study, noise-assisted multivariate empirical mode decomposition (NA-MEMD) is used to estimate the causal inference in the frequency domain, i.e., partial directed coherence (PDC). Natural and intrinsic oscillations corresponding to the motor imagery tasks can be extracted due to the data-driven approach of NA-MEMD, which does not employ predefined basis functions. Simulations based on synthetic data with a time delay between two signals demonstrated that NA-MEMD was the optimal method for estimating the delay between two signals. Furthermore, classification analysis of the motor imagery responses of 29 subjects revealed that NA-MEMD is a prerequisite process for estimating the causal network across multichannel EEG data during mental tasks.

Strong Uncorrelated Transform Applied to Spatially Distant Channel EEG Data

  • Kim, Youngjoo;Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.97-102
    • /
    • 2015
  • In this paper, an extension of the standard common spatial pattern (CSP) algorithm using the strong uncorrelated transform (SUT) is used in order to extract the features for an accurate classification of the left- and right-hand motor imagery tasks. The algorithm is designed to analyze the complex data, which can preserve the additional information of the relationship between the two electroencephalogram (EEG) data from distant channels. This is based on the fact that distant regions of the brain are spatially distributed spatially and related, as in a network. The real-world left- and right-hand motor imagery EEG data was acquired through the Physionet database and the support vector machine (SVM) was used as a classifier to test the proposed method. The results showed that extracting the features of the pair-wise channel data using the strong uncorrelated transform complex common spatial pattern (SUTCCSP) provides a higher classification rate compared to the standard CSP algorithm.