• Title/Summary/Keyword: MELCOR 1.8.6

Search Result 6, Processing Time 0.018 seconds

BETHSY 부분충수운전 실험 6.9c를 이용한 MELCOR 1.8.3 전산코드 평가

  • 조용진;김인구;이석호;이종인
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.629-634
    • /
    • 1998
  • 프랑스 CEA 실험장치인 BETHSY 실험설비에서 수행된 부분충수 운전에 대한 실험인 6.9c 실험에 대한 MELCOR 1.8.3 의 평가를 수행하였다. 이 연구는 OECD/NEA 국제공동연구인 ISP-38 로 수행되었다. 평가결과, MELCOR 1.8.3 은 부분충수운전시 잔열제거계통 상실에 대한 예측능력이 있고 원자로 냉각재계통압력, 노심수위 등 전반적으로 거동을 잘 모의하고 있다고 판단되었다. 그러나 민감도 분석에서 도출된 결론에 의하여 상간의 운동량 전달 및 Liquid Entrainment모델에 있어서 개선 필요성이 있는 것으로 평가되었다.

  • PDF

Impact of PSI-KIT Nitriding model on hypothetical Spent Fuel Pool accident simulation

  • Mateusz Malicki;Terttaliisa Lind
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2504-2515
    • /
    • 2023
  • In past years the Paul Scherrer Institute (PSI, Switzerland) and the Karlsruhe Institue of Technology (KIT, Germany)) collaborated to develop a model to account for the active role of nitrogen in the air oxidation of a Zircalloy cladding. The "PSI-KIT Nitriding Model for Zirconium based Fuel Cladding" model was implemented at PSI into PSI-MELCOR 1.8.6. In order to make a preliminary evaluation of the effect of the new model on the evolution of full-scale spent fuel pool accidents, one spent fuel pool event was analyzed using the PSI research version of PSI-MELCOR 1.8.6, which includes the nitriding model. To adapt an existing input deck for the calculations, a sensitivity study was conducted to find an optimal nodalization for the analyses. The nitriding model results were compared to those calculated with the MELCOR 1.8.6-PSI without the new nitriding model. The results demonstrate the effect of the nitriding reactions in spent fuel pool accident progression. Moreover, they confirm the impact of ZrN formation during cladding oxidation in air when the oxidation reactions lead to oxygen starvation inside the fuel assemblies. The nitriding reaction led to higher chemical heat generation during the accident and to an earlier failure of the cladding than when the effect of nitrogen reactions was not considered. It should be noted that the nitriding model, as implemented in the PSI version of MELCOR 1.8.6 has not yet been conclusively validated. Thereby the results presented in this paper should be treated as a preliminary demonstration of the capabilities of the model.

Assessment of the MELCOR 1.8.6 condensation heat transfer model under the presence of noncondensable gases (중대사고 해석코드 MELCOR 1.8.6의 비응축성기체 존재 시 응축열전달 모델 평가)

  • Yoo, Ji Min;Lee, Dong Hun;Yun, Byong Jo;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.1-20
    • /
    • 2016
  • A condensation heat transfer model is very important for the safety analysis of nuclear power plants. Especially, condensation under the presence of noncondensable gases (NCGs) is an important issue in nuclear safety because the presence of even a small quantity of NCGs in the vapor largely reduces the condensation rate. In this study, the condensation heat transfer model of the severe accident analysis code MELCOR 1.8.6 has been assessed using a set of condensation experiments performed under the thermal-hydraulic conditions similar to those inside a containment during design-basis accidents or severe accidents. Experiment conditions are categorized into 4 types according to the shape of the condensation surface: vertical flat plates, outer surface of vertical pipes, inner surface of vertical pipes, the inner surface of horizontal pipes. The results of the calculations show that the MELCOR code generally under-predicts the condensation heat transfer except the condensation on inner surface of vertical pipes.

Analysis of loss of cooling accident in VVER-1000/V446 spent fuel pool using RELAP5 and MELCOR codes

  • Seyed Khalil Mousavian;Amir Saeed Shirani;Francesco D'Auria
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3102-3113
    • /
    • 2023
  • Following the Fukushima nuclear disaster, the simulation of accidents in the spent fuel pool has become more noticeable. Despite the low amount of decay heat power, the consequences of the accidents in a spent fuel pool (SFP) can be severe due to the high content of long-lived radionuclides and lack of protection by the pressure vessel. In this study, the loss-of-cooling accident (LOFA) for the VVER-1000/V446 spent fuel pool is simulated by employing RELAP5 and MELCOR 1.8.6 as the best estimate and severe accident analysis codes, respectively. For two cases with different total power levels, decay heat of spent fuels is calculated by ORIGEN-II code. For modeling SFP of a VVER-1000, a qualified nodalizations are considered in both codes. During LOFA in SFP, the key sequences such as heating up of the pool water, boiling and reducing the water level, uncovering the spent fuels, increasing the temperature of the spent fuels, starting oxidation process (generating Hydrogen and extra power), the onset of fuel melting, and finally releasing radionuclides are studied for both cases. The obtained results show a reasonable consistency between the RELAP5 and MELCOR codes, especially before starting the oxidation process.

An Improvement of Estimation Method of Source Term to the Environment for Interfacing System LOCA for Typical PWR Using MELCOR code

  • Han, Seok-Jung;Kim, Tae-Woon;Ahn, Kwang-Il
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.106-113
    • /
    • 2017
  • Background: Interfacing-system loss-of-coolant-accident (ISLOCA) has been identified as the most hazardous accident scenario in the typical PWR plants. The present study as an effort to improve the knowledge of the source term to the environment during ISLOCA focuses on an improvement of the estimation method. Materials and Methods: The improvement was performed to take into account an effect of broken pipeline and auxiliary building structures relevant to ISLOCA. An estimation of the source term to the environment was for the OPR-1000 plants by MELOCR code version 1.8.6. Results and Discussion: The key features of the source term showed that the massive amount of fission products departed from the beginning of core degradation to the vessel breach. Conclusion: The release amount of fission products may be affected by the broken pipeline and the auxiliary building structure associated with release pathway.

Investigation of a Hydrogen Mitigation System During Large Break Loss-Of-Coolant Accident for a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Sayareh, Reza;Rahgoshay, Mohammad;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1174-1183
    • /
    • 2016
  • Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.