• Title/Summary/Keyword: MEK1

Search Result 224, Processing Time 0.032 seconds

Degradation Characteristics of Methyl Ethyl Ketone and Methyl Isobuthyl Ketone by Pseudomonas putida KT-3. (Pseudomonas putida KT-3의 Methyl Ethyl Ketone 및 Methyl Isobuthyl Ketone 분해 특성)

  • 김민주;이태호;이경미;류희욱;조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.395-401
    • /
    • 2002
  • Methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) have been widely used as solvents in various industries. Biodegradation of MEK and MIBK by Pseudomonas putida KT-3, which could utilize MEK or MIBK as a sole carbon source, was characterized, and the cosubstrate interaction in MEK/MIBK mixture was also studied. Within the range of initial MEK concentration (from 0.5 to 5.5 mM), an increased substrate concentration increased the specific degradation rate of MEK by P putida KT-3 (from 3.15 to 10.58 mmol/g DCW$\cdot$h), but the rate sightly increased at 11.0 mM of initial MEK concentation (11.28 mmol/g DCW$\cdot$h). The similar degradation rates of MIBK (4.69-4.92 mmol/g DCW$\cdot$h) were obtained at more than 3.0 mM of initial MIBK concentation. Kinetic analysis on the degradation of MEK/MIBK mixture by P. putida KT-3 showed that MEK or MIBK acted as a competitive inhibitor. Maximum degradation rate ($V_{max}$), saturation constant ($K_{m}$) and inhibition constant ($K_{1}$) were as follows: $V_{max,MEK}$=12.94 mmol/g DCW$\cdot$h; $K_{m,MEK}$=1.72 mmol/L; $K_{l,MEK}$=1.30 mmol/L; $V_{max,MIBK}$=5.00 mmol/g-DCW$\cdot$h; $K_{m,MIBK}$=0.42 mmol/L; $K_{l,MEK}$=0.77 mmol/L.

Geotrichum sp.를 이용한 biofiltration에서의 methyl ethyl ketone 제거

  • Choe, Jae-Heon;Park, Gyeong-Ran;O, Yeong-Suk;Choe, Seong-Chan
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.560-563
    • /
    • 2001
  • Geotrichum sp. MF01, isolated from oil-contaminated soil, utilized methyl ethyl ketone(MEK) as the sole source of carbon and energy. The strain MF01 showed a Michaelis-Menten kinetics on MEK, and the kinetic parameters determined for MEK degradation were; specific removal rate, $r_{max}$ = 0.14 $h^{-1}$; half-saturation constant, $K_m$ = 5.88 mM. The adsorption of MEK by heat-killed strain was 0.62 mg at 8.07 mg MEK indicating that the degradation was the primary removal mechanism over adsorption. Biodegradation of MEK was studied in a biofilter using perlite, vermiculite 0:1, v/v) as supporting material. During 57 days of biofilter operation, $^3h^{-1}$.

  • PDF

The Compatibility of MSDS through the Investigation of the Combustible Properties for MEK (MEK의 연소특성 고찰을 통한 MSDS의 적정성)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.36-41
    • /
    • 2008
  • For the safety design and operation of many chemical process, it is necessary to know certain explosion limit, flash point and autoignition temperature(AIT) of handling substances. Also it is necessary to know explosion limit at high temperature and pressure. For the safe handling of MEK(methyl ethyl ketone), explosion limit at $25^{\circ}C$ and the temperature dependence of the explosion limits were investigated. And flash point and AIT for MEK were experimented. By using the literatures data, the lower and upper explosion limits of MEK recommended 1.8 vol% and 11.0 vol%, respectively. In this study, measured the lower and upper flash points of MEK were $-5^{\circ}C$ and $22^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for MEK, and the experimental AIT of MEK was $507^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of MEK is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

Treatment of Odorous air pollutants by Plasma and Photocatalytic Process. (플라즈마 광촉매 복합 긍정을 이용한 악취물질 중 TEA, MEK의 분해처리)

  • 최금찬;정창훈
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1255-1260
    • /
    • 2003
  • Plasma-photocatalytic oxidation process was applied in the decomposition of Triethylamine(TEA) and Methyl ethyl ketone(MEK). Plasma reactor was made entirely of pyrex glass and consists of 24mm inner diameter, 1,800mm length and discharge electrode of 0.4mm stainless steel. And initial concentrations of TEA and MEK for plasma-photocatalytic oxidation are 100 ppm. Odor gas samples were taken by gas-tight syringe from a glass sampling bulb which was located at reactor inlet and outlet, and TEA and MEK were determined by GC-FID. For plasma process, the decomposition efficiency of TEA and MEK were evaluated by varying different flowrates and decomposition efficiency of TEA and MEK increased considerably with decreasing treatment flowrates. For photocatalytic oxidation process, also the decomposition efficiency of TEA and MEK increased considerably with decreasing treatment flowrates. The decomposition efficiency of MEK was 57.8%, 34.2%, 18.8% respectively and the decomposition efficiency of TEA was reached all 100%. This result is higher than that of plasma process only, From this study, the results indicate that plasma-photocatalytic oxidation process is ideal for treatment of TEA and MEK.

Catalytic Incineration Kinetics of Gaseous MEK and Toluene (MEK와 톨루엔의 촉매연소 속도특성)

  • 이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.113-119
    • /
    • 1999
  • In this study, the incineration of MEK and toluene was studied on a Pt supported alumina catalyst at temperature range from 200 to $350^{\circ}C$. An approach based on the Mars-van Krevelen rate model was used to explain the results. The object of this study was to study the kinetic behavior of the platinum catalyst for deep oxidation. The conversions of MEK and toluene were increased as the inlet concentration was decreased and the reaction temperature was increased. The maximum deep conversion of MEK and toluene were 91.81% and 55.69% at $350^{\circ}C$, respectively. The ${\kappa}_3$ constant increases with temperature faster than the ${\kappa}_1$ constant, that is, the surface concentration of ($VOCs{\cdots}O$) is higher than that of (O) at higher temperature according to the Mars-van Krevelen mechanism. Also the activation energy of toluene was larger than MEK for toluene is aromatic compound which have stronger bonding energy.Therefore, the catalytic incineration kinetics of MEK and toluene with Mars-van Krevelen mechanism could be used as the basic data for industrial processes.

  • PDF

Evaluation of Hybrid Thermal Oxidation(HTO) System for Removal of MEK(Methyl ethyl ketone) and Toluene (복합열산화(Hybrid Thermal Oxidation) 시스템을 이용한 MEK(Methyl ethyl ketone)와 Toluene 제거 평가)

  • Jang, Duhun;Bae, Wookeun;Kim, Moonil;Kim, Kyungtae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, optimization of MEK and Toluene removal was conducted by HTO(Hybrid Thermal Oxidation) system. HTO system has a multi-bed reaction plate and the plate consisted of wasted heat regeneration part and catalysis part. VOCs removal by HTO system was estimated by changing inlet flow rates with different valve changing times. Under $350^{\circ}C$ of combustion temperature, VOCs was fully converted and the equivalent conversion was 100%. The thermal oxidation efficiency, related to the amount of injected fuel into HTO system and the valve change time, was revealed at the level of 93.0~96.3%. In case of MEK removal by HTO system, the efficiency was ranged from 91.1 to 97.1%. Also, Toluene removal efficiency(93.2~97.4%) was good and stable with respect to the operating conditions. Considering above results, it was proved that HTO system could be a stable and compact system for VOCs, especially MEK and Toluene with high removal efficiency.

The MEK-1 Inhibitor, PD98059 reduces dioxin-induced CYP1A1 expression

  • Yim, Su-JIn;Suh, Jung-Ho;Park, Hyun-Sung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.238-238
    • /
    • 2002
  • We studied whether kinase pathways are involved in TCDD-induced gene expression by treating specific kinase inhibitors ncluding MEK1 inhibitor PD98059, p38 inhibitor SB202190, PI-3 kinase inhibitor Wortmannin or LY294002 or protein tyrosine kinase inhibitor Genestein and then tested the effects of individual inhibitors on TCDD-induced gene expression of cytochromelAl gene (CYPlAl). Our results show that PD98059, MEK-1 inhibitor reduces dioxin-inducible transcription of CYPlAl. p44/p42MAPK, that is phosphorylated by Mek-1, are phosphorlylated by treatment of TCDD, peaking at lnM, 30min treatments. Overexpressions of p44/p42 MAPK dominant negative mutants suppress dioxin dependent transcription of DRE-driven reporter gene in a dose-dependent manner. Our results demonstrate that p44/p42 MAPK is essential for transcriptional activity of AHR/ARNT heterodimer. We found that PD98059 dose-dependently blocks TCDD-induced DRE binding of the AHR/ARNT heterodimer, thereby it reduces TCDD-induced gene expression. Therefore, our results indicate that Mek-1/p44/p42 MAPK pathway is involved in TCDD-induced gene expression, [This study was supported by a grant from Korean Research Foundation Grant (X01529)to H. Park]

  • PDF

Detection of Methylethylketone in the Ambient Air of Industrial Area in Gimhae City and Its Effect on the Generation of Reactive Oxygen Species (김해시 공업지역의 대기 중 Methylethylketone 측정과 활성산소종 생성에 관한 연구)

  • Park, Heung-Jai;Jeong, Seong-Wook;Kim, Jong-Myoung;An, Won-Gun
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.995-999
    • /
    • 2007
  • This study assessed the characteristics of emission and cell toxicology of Methylethylketone(MEK) in ambient air of industrial area. MEK is produced by the oxidation of sec-butyl alcohol and used as the solvent for making ink, printing, coating of film, bonding material and drug extraction. The MEK concentrations in the ambient-air of industrial area in Gimhae City was detected in the range of $25.4{\sim}1,580{\mu}g/m^3$ with an average $297.4{\mu}g/m^3$. The concentration of MEK showed a descending tendency from April to August followed by its increased tendency since then. The effects of MEK on the human lung cancer A549 cells was examined by the generation of Reactive Oxygen Species(ROS) and cytotoxicity. The range of MEK concentration detected in the area induced ROS generation affecting the oxidation state with a little effects on the viability of the cells.

Removal of Volatile Organic Compounds using Candida tropicalis Immobilized on Polymer Gel Media in an Airlift Loop Bioreactor (Candida tropicalis 포괄고정 담체를 적용한 Airlift Loop Bioreactor에서의 복합 휘발성유기화합물 제거)

  • NamGung, Hyeong-Kyu;Ha, Jeong-Hyub;Hwang, Sun-Jin;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.603-610
    • /
    • 2009
  • This research was performed to improve removal efficiency of toluene and methyl ethyl ketone (MEK) using Candida tropicalis, one of the yeast species. An airlift loop bioreactor (ALB) was employed to enhance the capability of mass transfer for toluene and MEK from the gas phase to the liquid, microbial phase. Polymer gel media made from PAC, alginate and PEG was applied for the effective immobilization of the yeast strain on the polymer gel media. The experimental results indicated that the mass transfer coefficient of toluene without polymer gel media was 1.29 $min^{-1}$ at a gas retention time of 15 sec, whereas the KLa value for toluene was increased to 4.07 $min^{-1}$ by adding the media, confirming the enhanced mass transfer of volatile organic compounds between the gas and liquid phases. The removal efficiency of toluene and MEK by using yeast-immobilized polymer gel media in the ALB was greater than 80% at different pollutant loading rates (5, 10, 19 and 37 g/$m^3$/hr for toluene, 4.5, 8.9, 17.8 and 35.1 g/$m^3$/hr for MEK). In addition, an elimination capacity test conducted by changing inlet loading rates stepwise demonstrated that maximum elimination capacities for toluene and MEK were 70.4 and 56.4 g/$m^3$/hr, respectively.

Selection of Biofilter Support for Removing MEK (MEK 제거를 위한 바이오필터용 담체의 선택)

  • Jeong Gwi-Taek;Lee Gwang-Yeon;Lee Kyoung-Min;Sunwoo Chang-Shin;Lee Woo-Tae;Jung Seong-Ho;Cha Jin-Myoung;Jang Young-Seon;Park Don-Hee
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.34-41
    • /
    • 2006
  • The aim of this study is the development of biological removal process of methyl ethyl ketone (MEK) in odor gas, which is generated from the waste food recycling process. To develop the removal process of odor gas, MEK, the selection of proper biofilter support was carried out. When the biofilter equipment was passed by synthetic odor gas composed of 250 ppm of MEK, the maximum removal was achieved to $586.6g-MEK/m^3\;hr$ for polypropylene fibril as support. Under the same experimental conditions, the maximum removal in polyurethane support was obtained to $359.7 g-MEK/m^3\;hr$. Finally, the maximum removal in volcanic stone support was $56.2g-MEK/m^3\;hr$.