• Title/Summary/Keyword: MDS blasting method

Search Result 2, Processing Time 0.02 seconds

A Study on the MDS Blasting Method Applicability by Test Field Construction (시험시공을 통한 MDS 발파공법의 현장 적용성에 관한 연구)

  • Bong-Hyun Lee;Sung-Oong Choi
    • Explosives and Blasting
    • /
    • v.42 no.1
    • /
    • pp.23-33
    • /
    • 2024
  • Recently, various techniques and patented methods on blasting operation are being newly developed. In this study, test construction of the MDS blasting method was performed, and the fragmentation size and the occurrence rate of rocks exceeding 300mm were measured and analyzed in comparing to normal blasting method. Test construction was performed three times each for normal and the MDS at the same bench for each round, and fragmentation size(P80) and occurrence rate of rocks exceeding 300mm(S30) were measured using digital image processing. A sieve bucket was also manufactured on-site to sort oversized rock particles from muck piles, and their weights and equivalents were measured to calculate actual values. As a result, the fragmentation size decreased of 21.0% with the MDS compared to normal, and 100-S30 decreased of 10.1%, with actual values decreasing of 7.6%. Although there were variations in blasting effects for each round due to differences in rock quality at site, overall, the MDS proved to be more effective compared to normal blasting method under equivalent conditions.

Analyzing the Effects of the Initiation Sequences of the MDS Blasting Method on Rock Fracturing Using SPH-FEM Coupling Technique (SPH-FEM 연계기법을 이용한 MDS 발파법의 기폭패턴별 암석파괴 효과 분석)

  • Byung-Hee Choi;Young-Geun Kim;Ki-Chan Jeon;Se-Wook Oh
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.13-25
    • /
    • 2023
  • The conventional bench blasting method uses the bottom initiation in all blast holes in a round, whereas the MDS (mixture detonation system) method applies the bottom and top initiations alternately according to the spatial position or temporal sequence of each blast hole. The former and latter are respectively called the SMDS (spatial MDS) and TMDS (temporal MDS) methods. Another variant called MMDS (modified MDS) is designed for the specific use in the site having a fly-rock problem. This study compares the MDS method to the conventional method in the aspect of rock fracturing effect. The comparison is made by numerical simulations for a two-row bench blasting model in the LS-DYNA. The SPH-FEM coupling method is utilized for constructing the blasting model. The SPH elements are used for the rock in the near-field region of the blast holes, and the FEM elements for that in the far-field region. The RHT material model is used for the rock. As a result of the simulations, it was found that up to 0.4 m deeper damaged zone was appeared in the SMDS method than in the conventional method for the case of the burden 1.6 m and bench height 3.0 m. In addition, the fly-rock velocity to the normal direction of the bench slope was appeared about 2.0 m/s lower in the MMDS method compared to the other methods.