• Title/Summary/Keyword: MDR reversal agent

Search Result 6, Processing Time 0.021 seconds

Reversal of Multidrug Resistance by Benzotriazepin Analogues in Cancer Cells (Benzotriazepin 유도체의 암세포에 대한 다약제내성 억제효과)

  • Kim Mi Hye;Choi Sang Un;Choi Eun Jung;Kim Sung Soo;Choi Jung Kwon;Ahn Jin Hee;Lee Chong Ock;Kwon Kwang Il
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.38-43
    • /
    • 2005
  • The occurrence of resistance to chemotherapeutic drugs is a major problem for successful cancer treatment. This resistant phenotype of cancer cell frequently reveals a broad spectrum to structurally and/or functionally unrelated anticancer drugs, termed multidrug resistance (MDR). Overexpression of P-glycoprotein (P-gp), a transmembrane drug efflux pump, is a major mechanism of MDR. Accordingly, considerable effort has been directed towards to development of compounds that inhibit P-gp, reverse the MDR phenotype and sensitize cancer cells to conventional chemotherapy without undesired toxicological effects. In an effort to search for novel MDR reversal agent, we tested the cytotoxicity of paclitaxel, a well-known substrate of P-gp, against P-gp-expressing HCT15 and HCT15/CL02 human colorectal cancer cells in the presence or absence of benzotriazepin analogues, as well as against P-gp-negative A549 human non-small cell lung and SK-OV-3 human ovarian cancer cells in vitro. Among the compounds tested, the agents that have phenyl amide moiety at 3 position remarkably increased the cytotoxicity of paclitaxel against P-gp-expressing cancer cells, but not against P-gp-negative cancer cells. BTZ-15 and BTZ-16 at $4\;{\mu}M$ revealed similar MDR reversal activity to $10\;{\mu}M$ verapamil, a well-known MDR reversal agent.

Synthesis and Biological Evaluation of Phenoxy-N-phenylacetamide Derivatives as Novel P-glycoprotein Inhibitors

  • Lee, Kyeong;Roh, Sang-Hee;Xia, Yan;Kang, Keon-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3666-3674
    • /
    • 2011
  • Overexpression of P-glycoprotein (Pgp) is associated with multidrug resistance (MDR) of tumor cells to a number of chemotherapeutic drugs. Pgp inhibitors have been shown to effectively reverse Pgp-mediated MDR. We prepared a series of phenoxy-N-phenylacetamide derivatives and tested for their ability to inhibit Pgp as potential MDR reversing agents, using a Pgp over-expressing MCF-7/ADR cell line. Some of the synthesized compounds exhibited moderate to potent reversal activity. Of note, compound 4o showed a 3.0-fold increased inhibition compared with verapamil, a well-known Pgp inhibitor. In addition, co-treatment of the representative compound 4o and a substrate anticancer agent doxorubicin resulted in a remarkable increase in doxorubicin's antitumor effect and inhibition of DNA synthesis in the MCF-7/ADR cell line. Taken together, these findings suggest that compound 4o could be a useful lead for development of a novel Pgp inhibitor for treatment of MDR.

Establishment of Doxorubicin-resistant Subline Derived from HCT15 Human Colorectal Cancer Cells

  • Choi, Sang-Un;Kim, Nam-Young;Choi, Eun-Jung;Kim, Kwang-Hee;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.342-347
    • /
    • 1996
  • Doxorubicin, one of the clinically most useful anticancer agents, is used alone or in combination with other drugs against a wide variety of tumors, recently. But cancer cells developed resistance to this agent in many ways. This resistance is an important limiting factor of doxorubicin for anticancer drug. We newly established doxorubicin-resistant HCT15/CL02 subline from parental HCT15 human adenocarcinoma colon cancer cells. HCT15/CL02 revealed resistance to doxorubicin about 85-fold of its parental cells, and it also revealed cross-resistance to actinomycin D, etoposide and vinblastine but not to displatin and tamoxifen. And verapamil, a reversal agent of multidrug-resistance (MDR) by P-glycoprotein, elevated the cytotoxicity of doxorubicin against both HCT15 and GCT15/CL02 cells. But the relative resistant rate was not reduced. Verapamil had no effects on the tosicity of cisplatin to the both cell lines. These results indicate that HCT15/CL02 cells have some functionally complex mechanisms for MDR.

  • PDF

Isolation and Structure Elucidation, Molecular Docking Studies of Screlotiumol from Soil Borne Fungi Screlotium rolfsii and their Reversal of Multidrug Resistance in Mouse Lymphoma Cells

  • Ahmad, Bashir;Rizwan, Muhammad;Rauf, Abdur;Raza, Muslim;Azam, Sadiq;Bashir, Shumaila;Molnar, Joseph;Csonka, Akos;Szabo, Diana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2083-2087
    • /
    • 2016
  • A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one (1) was isolated from an ethyl acetate extract of the borne fungi Screlotium rolfsii. Its chemical structure was elucidated by spectroscopic analysis. Screlotiumol 1 were evaluated for their effects on the reversion of multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) of the soil borne fungi. The multidrug resistant P-glycoprotein is a target for chemotherapeutic drugs in cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound-1 also showed better results as compared with the standard. Therefore the preliminary results obtained from this study suggest that screlotiumol 1 could be used as a potential agent for the treatment of cancer.

Reversal of Multidrug Resistance with KR-30035: Evaluated with Biodistribution of Tc-99m MIBI in Nude Mice Bearing Human Tumor Xenografts (이종이식된 인체종양에서 KR-30035가 Tc-99m MIBI체내 분포에 미치는 영향으로 평가한 다약제내성 역전가능성)

  • Kim, Jung-Kyun;Lee, Byung-Ho;Choi, Sang-Woon;Yoo, Sung-Eun;Lee, Sang-Woo;Chun, Kyung-Ah;Ahn, Byeong-Cheol;Park, Jae-Young;Suh, Jang-Soo;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.168-184
    • /
    • 2001
  • Purpose: KR-30035 (KR), a new MDR reversing agent, has been found to produce a similar degree of increased Tc-99m MIBI uptake in cultured tumor cells over-expressing mdr1 mRNA compared to verapamil (VP), with less cardiovascular effects. We assessed the MDR-reversing ability of KR in vivo, and effects of various doses of KR on MIBI uptake un nude mice hearing P-glycoprotein (P-gp) positive (+) and P-gp negative (-) human tumor xenografts. Methods: P-gp (+) HCT15/CL02 colorectal and P-gp (-) A549 non-small cell cancer cells were inoculated in each flank of 120 nude mice (20 mice ${\times}$ 6 groups). Group 1 (Gr1) mice received 10mg/kg KR i.p. 3 times $({\times}3)$; Gr2, 10mg/kg VP i.p. ${\times}3$; Gr3, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.p. ${\times}1$; Gr4, 10mg/kg KR i.p. ${\times}2$ + 50mg/kg i.p. ${\times}1$; Gr5, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.v. ${\times}1$, GrC, controls. The mice were then injected with Tc-99m MIBI and sacrificed after 10 min, 30 min, 90 min and 240 min. Tumor uptake of MIBI (TU) in each group was compared. Results: TU in P-gp (+) and (-) tumors were both higher in Gr1 than Gr2. Washout rate between the 10 min and 4 hours was lower in Gr5 of P-gp (+) cell(0.93) than the control. Percentage increases in TU were higher in P-gp (+) than P-gp (-) tumors with all KR doses. Pgp (+) TU were highest at 10 mon (173% of GrC) and persisted up to 240 min (144%) in Gr3. Larger doses of KR resulted in a lesser degree of increase in P-gp (+) TU at 10 min (130% in Gr4 and 117% un Gr5) and 30 min (178%, 129%), but TU increased by time up to 240 min (177%, 196%). Heart and lung uptakes were markedly increased in Gr4 and Gr5 at 10 and 30 min, likely due to cardiovascular effects. No mice died. Conclusion: These data further suggest that KR that has significantly lower cardiovascular toxicity than verapamil can be used as an active inhibitor of MDR. Even a relatively low dose of KR significantly increased Tc-99m MIBI uptake in P-gp (+) tumors in vivo.

  • PDF

Comparative Uptake of Tc-99m Sestamibi and Tc-99m Tetrofosmin in Cancer Cells and Tissue Expressing P-Glycoprotein or Multidrug Resistance Associated Protein (P-Glycoprotein과 Multidrug Resistance Associated Protein을 발현하는 암세포와 종양에서 Tc-99m Sestamibi와 Tc-99m Tetrofosmin의 섭취율 비교)

  • Cho, Jung-Ah;Lee, Jae-Tae;Yoo, Jung-Ah;Seo, Ji-Hyoung;Bae, Jin-Ho;Jeong, Shin-Young;Ahn, Byeong-Cheol;Sohn, Sang-Gyun;Ha, Jeoung-Hee;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.34-43
    • /
    • 2005
  • Purpose: $^{99m}Tc$-sestamibi(MIBI) and $^{99m}Tc$-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of $^{99m}Tc$-MIBI and $^{99m}Tc$-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. Materials and Methods: HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. Results: RT-PCR, western blot analysis of the cells and irnrnunochemical staining revealed selective expression of Pgp and MRP for HCY15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10- and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (p<0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But increases in tumoral uptake were not significantly different between MIBI and tetrofosmin for both tumors. Conclusion: MIBI seems to be a better tracer than tetrofosmin for evaluating MDR reversal effect of the modulators in vitro, but these differences were not evident in vivo tumoral uptake. Both MIBI and tetrofosmin seem to be suitable tracers for imaging Pgp- and MRP-mediated drug resistance in tumors.