• Title/Summary/Keyword: MDOF

Search Result 117, Processing Time 0.021 seconds

Responses of Equivalent SDOF System for System Ductility Demands Evaluation of Multistory Building Structures (건축구조물의 시스템 연성요구도 평가를 위한 대표응답의 활용)

  • 최원호;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.446-453
    • /
    • 2001
  • System-level ductility is an essential parameter for seismic performance evaluation of multistory building structures. The ductility demands for single degree of freedom structures or individual structural members can be determined easily. However, there is no clearly established method to determine the ductility demands for structural systems. The system ductility demands are estimated in this study by the equivalent SDOF system methods and proposed method which used the representative responses obtained from the MDOF systems directly. And seismic performance of building structures is evaluated by the modified Capacity Spectrum Method using the representative responses, and the result was compared with those of the inelastic time history analysis.

  • PDF

Development of energy based Neuro-Wavelet algorithm to suppress structural vibration

  • Bigdeli, Yasser;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.237-246
    • /
    • 2017
  • In the present paper a new Neuro-Wavelet control algorithm is proposed based on a cost function to actively control the vibrations of structures under earthquake loads. A wavelet neural network (WNN) was developed to train the control algorithm. This algorithm is designed to control multi-degree-of-freedom (MDOF) structures which consider the geometric and material non-linearity, structural irregularity, and the incident direction of an earthquake load. The training process of the algorithm was performed by using the El-Centro 1940 earthquake record. A numerical model of a three dimensional (3D) three story building was used to accredit the control algorithm under three different seismic loads. Displacement responses and hysteretic behavior of the structure before and after the application of the controller showed that the proposed strategy can be applied effectively to suppress the structural vibrations.

Seismic Response Control Performance of Linear and Nonlinear TLD Models (선형 및 비선형 TLD의 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.519-526
    • /
    • 2006
  • This paper compares the seismic response control performance of linear and non-linear models fer tuned liquid damper (TLD). The existing linear and nonlinear TLD models were used for the numerical analysis of single degree of freedom (SDOF) and multi degree of freedom (MDOF) systems with TLD. The nonlinear model considers the variation of the frequency and damping of the TLD with varying excitation amplitude while the linear one has the invariant parameters. Numerical analysis results from SDOF systems indicate that the nonlinear model shows about 5% better control performance than linear one when the mass ratio is 2% and the optimal parameters for reducing peak responses are dependent on the characteristics of the excitation earthquake loads.

  • PDF

Modeling the cumulative residual deformation of high-speed railway bridge pier subjected to multiple earthquakes

  • Gou, Hongye;Leng, Dan;Yang, Longcheng;Jia, Hongyu
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.317-327
    • /
    • 2019
  • High-speed railway bridge piers in seismically active area may be subjected to multiple earthquakes and then produce cumulative residual deformation. To study the cumulative residual deformation of high-speed railway bridge piers under multiple earthquakes, a nonlinear numerical analytical model with multi-DOF (MDOF) system is presented and validated against two shaking table tests in this paper. Based on the presented model, a simple supported beam bridge pier model of high-speed railway is established and used to investigate the cumulative residual deformation of high-speed railway bridge pier under mainshock-aftershock sequences and swarm type seismic sequences. The results show that the cumulative residual deformation of the bridge pier increases with earthquake number, and the increasing rates are different under different earthquake number. The residual deformation of bridge pier subjected to multiple earthquakes is accumulated and may exceed the limit of code.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System (등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토)

  • 송호산;전대한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model to represent the resistance of the structure to deformation as it respond in its predominant mode. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. Comparing the peak inelastic response of a moment resisting reinforced concrete frames and an equivalent SDOF model, the adequacy and the validity of the converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector \ulcorner$_1{\beta}$${_1{\mu}}=1$. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.

Optimization and application of multiple tuned mass dampers in the vibration control of pedestrian bridges

  • Lu, Zheng;Chen, Xiaoyi;Li, Xiaowei;Li, Peizhen
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • An effective design approach for Multiple Tuned Mass Dampers (MTMDs) in pedestrian bridges was proposed by utilizing the transfer function to obtain each TMD's optimum stiffness and damping. A systematic simulation of pedestrian excitations was described. The motion equation of a typical MTMD system attached to a Multi-degree-of-freedom (MDOF) system was presented, and the transfer function from the input pedestrian excitations to the output acceleration responses was defined. By solving the minimum norm of the transfer function, the parameters of the MTMD which resulted in the minimum overall responses can be obtained. Two applications of lightly damped pedestrian bridges attached with MTMD showed that MTMDs designed through this method can significantly reduce the structural responses when subjected to pedestrian excitations, and the vibration control effects were better than the MTMD when it was considered as being composed of equal number and mass ratios of TMDs designed by classical Den Hartog method.

Performance Evaluation of Multi-Degree-of-Freedom Robotic Mixer using Discrete Element Mixing Simulations (이산요소법 교반 시뮬레이션을 이용한 다자유도 로봇 믹서 성능 평가)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.219-224
    • /
    • 2020
  • Industrial mixers to homogeneously blend particulate materials have been developed and widely used in various industries. However, most industrial mixers have at most two-degree-of-freedom for the operation, which limits the range of operation parameter selection for optimal blending. This paper proposes a multi-degree-of-freedom robotic mixer designed by converging a conventional drum blender and a robotic manipulator and evaluated its performance in a virtual operating environment. Discrete element simulations were conducted for mixing performance evaluation. The numerical results showed that the proposed mixer design exhibits a better mixing performance than conventional ones.

A Study on the Vibration Behavior of Building Structures due to Undergroud Blasting (지중발파에 의한 건물의 진동 거동에 관한 연구)

  • 조병윤;문형구
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 1996
  • In order to analyze the effects of ground vibration caused by underground blasting having an effect on structure, the particle velocity and acceleration are calculated by using DYNPAK program. The DYNPAK program analyzes nonlinear transient dynamic problem and adopts the very popular and easily implemented, explicit, central difference scheme. In this program, the material behavior is assumed to be elasto-viscoplastic. Using the particle acceleration history, modal analysis method is applied to the forced vibration response of multiple-degree-of-freedom(MDOF) systems using unclupled equations of motion expressed in terms of the system's natural circular frequencies and modal damping factors. AS a means of evaluating the vibration behavior of building structure subjected to underground blasting, the time response of the displacements relative to the ground of five-story building is determined. It is concluded that the amount of explosives consumed per round, the location of structure, the properties of rock medium, the stiffness fo structure, etc. act on the important factors influencing on the safety of building and that the response of a structure subjected to a forced excitation can usually be obtained with reasonable accuracy by the modal analysis of only a few mode of the lower frequencies of the system.

  • PDF

Parametric study on earthquake induced pounding between adjacent buildings

  • Naserkhaki, Sadegh;Abdul Aziz, Farah N.A.;Pourmohammad, Hassan
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.503-526
    • /
    • 2012
  • Pounding between closely located adjacent buildings is a serious issue of dense cities in the earthquake prone areas. Seismic responses of adjacent buildings subjected to earthquake induced pounding are numerically studied in this paper. The adjacent buildings are modeled as the lumped mass shear buildings subjected to earthquake acceleration and the pounding forces are modeled as the Kelvin contact force model. The Kelvin model is activated when the separation gap is closed and the buildings pound together. Characteristics of the Kelvin model are extensively explored and a new procedure is proposed to determine its stiffness. The developed model is solved numerically and a SDOF pounding case as well as a MDOF pounding case of multistory adjacent buildings are elaborated and discussed. Effects of different separation gaps, building heights and earthquake excitations on the seismic responses of adjacent buildings are obtained. Results show that the seismic responses of adjacent buildings are affected negatively by the pounding. More stories pound together and pounding is more intense if the separation gap is smaller. When the height of buildings differs significantly, the taller building is almost unaffected while the shorter building is affected detrimentally. Finally, the buildings should be analyzed case by case considering the potential earthquake excitation in the area.