• Title/Summary/Keyword: MDO 프레임워크

Search Result 16, Processing Time 0.029 seconds

Missile Configuration Design and Optimization Using MDO Framework (MDO 프레임워크를 이용한 유도무기 최적 형상 설계)

  • Lee Seung-Jin;Kim Woo-Hyun;Lee Jae-Woo;Lee Chang-Hyuk;Kim Sang-Ho;Hwang Sung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.343-346
    • /
    • 2006
  • In this study, optimization process is constructed for developing missile MDO framework. The analysis tools which are integrated in the missile MDO framework and data flow between analysis tools are investigated. Using analyzed results, the optimal design scenario is constructed. Then to verify optimal design scenario, missile design problem is made and performed.

  • PDF

Multidisciplinary Aircraft Wing Design Using the MDO Framework (MDO 프레임워크 개발을 통한 항공기 날개 통합최적화 설계)

  • Lee, Jae-Woo;Kim, Jong-Hwan;Jeang, Ju-Young;Jeon, Kwon-Su;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.23-33
    • /
    • 2004
  • MDO framework, which provides multidisciplinary system design and optimization environment, requires integration of the analyses codes developed at various computer languages and operating systems, integration of CAD and DBMS, and development of complex GUI. Emphases must be given to the software modification and upgrades in conjunction with the analysis code addition and MDO method implementation. In this study, techniques about system integration and analysis code interface have been studied extensively, and the database design and communication methods which can handle the MDO methods like MDF and CO have been studied. Using the dedicated MDO framework developed for the air vehicle design, the multidisciplinary fighter aircraft wing design has been performed to demonstrate the efficiency and usefulness of the software. Optimum wing configuration is derived using the gradient-based optimization methods within thirty design iterations.

Analysis of development methods for a Multidisciplinary Design Optimization framework (다분야 통합 최적설계 프레임워크 구축방법 분석)

  • Lee, Ho-Jun;Lee, Jae-Woo;Moon, Chang-Joo;Kim, Sang-Ho;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.947-953
    • /
    • 2008
  • MDO(Multidisciplinary Design and Optimization) framework can be an integrated environment or a system, which is for synthetic and simultaneous analysis and design optimization in various design fields of aerospace systems. MDO framework has to efficiently use and integrate distributed resources such as various analysis codes, optimization codes, CAD tools, DBMS and etc. in heterogeneous environment, and to provide graphical and easy-to-use user interfaces. Also, its development method can be changed by design objects and development environment. In this paper, we classify MDO frameworks into three types according to the development environments: Single PC-based, PLinda-based and Web Services-based MDO framework. And, we compare and analyze these frameworks.

Parallel Computing Based Design Framework for Multidisciplinary Design Optimization (병렬 컴퓨팅 기반 다분야통합최적설계 지원 설계 프레임워크)

  • Chu, Min-Sik;Lee, Yong-Bin;Lee, Se-Jung;Choi, Dong-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.34-41
    • /
    • 2005
  • A parallel computing technique was applied to large scale structure analysis or aerodynamic design and it is a essential element in reducing the huge computation time for large scale design problem. We can use a many computers for reducing the analysis time of multidisciplinary design optimization. But previous MDO frameworks can not support a parallel design process technique so still existing which calls an analysis program continuously. In this paper, We developed a MDO framework(MLR) which supports a parallel design process to solve sequential analysis call. Finally, three sample cases are presented to show the efficiency of design time using the suggested MDO framework.

Web Service-Based Integrated Design Framework (웹 서비스 기반의 통합 설계 프레임워크)

  • Jang Won-Seok;Kim Kwang-Sik;Jeong Karp-Joo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.187-189
    • /
    • 2006
  • 오늘날 공학 분야에서 한 분야에서만 이뤄지던 연구가 다분야 통합 연구로 바뀌어 가고 있다. MDO(Multi-Disciplinary Optimization) 프레임워크는 각 분야의 설계 도구들 간의 데이터 공유로 효율적 관리를 위한 기술과 여러 분야가 분산된 환경 하에서 병렬로 작업할 수 있는 컴퓨팅 환경을 말한다. 기존의 MDO 프레임워크는 여러 분야의 설계 도구들을 통합 관리하는 표준 인터페이스가 없고 이것들의 작업 흐름을 자동으로 통합 관리할 환경이 없다는 문제점이 있다. 본 논문에서는 웹 서비스를 사용하여 각 설계도구 간의 표준 인터페이스를 제공하고, 워크플로우를 사용하여 이것들을 자동으로 통합 관리하는 웹 서비스 기반 통합 설계 프레임워크를 구현한다.

  • PDF

A Study on the Integration of Analysis Modules and the Optimization Process in the MDO Framework (MDO 프레임워크 개발을 위한 해석 코드 및 최적화 과정 통합에 관한 연구)

  • Cho, Sang-Oh;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.1-10
    • /
    • 2002
  • Multidisciplinary Design Optimization (MDO) is a new design approach, which aims to reduce the design cycle and the development cost, while improving the performance of the product. In order to develop a framework software where the multidisciplinary design is possible, several methods about the analysis codes integration, the analysis and optimization process management, and the software architecture, are proposed in this study. Centralized DataBase Management System (DBMS) is adopted. Both the Dynamic Link Library(DLL) and the File Interface are suggested and implemented as analysis codes integration methods. To efficiently manage the optimization process and the data flow, the Graphic Programming approach is introduced. The proposed integration methods are verified by two test case examples: Simple house design example and the aircraft wing design problem using three dimensional Panel Code.

Implemention of the System-Level Multidisciplinary Design Optimization Using the Process Integration and Design Optimization Framework (PIDO 프레임워크를 이용한 시스템 레벨의 선박 최적설계 구현)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.93-102
    • /
    • 2020
  • The design of large complex mechanical systems, such as automobile, aircraft, and ship, is a kind of Multidisciplinary Design Optimization (MDO) because it requires both experience and expertise in many areas. With the rapid development of technology and the demand to improve human convenience, the complexity of these systems is increasing further. The design of such a complex system requires an integrated system design, i.e., MDO, which can fuse not only domain-specific knowledge but also knowledge, experience, and perspectives in various fields. In the past, the MDO relied heavily on the designer's intuition and experience, making it less efficient in terms of accuracy and time efficiency. Process integration and the design optimization framework mainly support MDO owing to the evolution of IT technology. This paper examined the procedure and methods to implement an efficient MDO with reasonable effort and time using RCE, an open-source PIDO framework. As a benchmarking example, the authors applied the proposed MDO methodology to a bulk carrier's conceptual design synthesis model. The validity of this proposed MDO methodology was determined by visual analysis of the Pareto optimal solutions.

Study on an Approximation Technique using MDO (MDO에서 적용가능한 근사기법의 활용에 관한 연구)

  • Park, Chang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3661-3666
    • /
    • 2015
  • The paper describes the integrated design system using MDO and approximation technique. In MDO related research, final target is an integrated and automated MDO framework systems. However, in order to construct the integrated design system, the prerequisite condition is how much save computational cost because of iterative process in optimization design and lots of data information in CAD/CAE integration. Therefore, this paper presents that an efficient approximation method, Adaptive approximation, is a competent strategy via MDO framework systems.

Development of Web-based MDO Framework for Design and Analysis Integration (설계 및 해석정보를 연계한 웹 기반 다분야통합설계 프레임워크 개발)

  • Park, Chang-Kue;Yang, Young-Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.322-328
    • /
    • 2008
  • Recently, the rapid progress of Internet and Network affects engineering design environment as well as Business fields to utilize Web technologies to enhance it's competitively in the world. In product development, experts and organizations actually taking part in the design process are often geographically dispersed. Furthermore, different divisions and businesses often have heterogeneous CAD/CAE systems and methods for expressing product data, and addressing this heterogeneity creates additional costs and causes longer development periods. To ensure successful collaboration in the design process, it is therefore imperative that distributed CAD, CAE, and other related systems be managed in an organic and integrated manner from the initial stages of product development. Therefore, this study suggests Web-based MDO(Multidisciplinary Design Optimization) framework to support interfacing and the collective use of design and analysis tools.

Development of a Distributed Computing Framework far Implementing Multidisciplinary Design Optimization (다분야통합최적설계를 지원하는 분산환경 기반의 설계 프레임워크 개발)

  • Chu M. S.;Lee S. J.;Choi D.-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.143-150
    • /
    • 2005
  • A design framework to employ the multidisciplinary design optimization technologies on a computer system has been developed and is named as the Extensible Multidisciplinary Design Integration and Optimization System (EMDIOS). The framework can not only effectively solve complex system design problems but also conveniently handle MDO problems. Since the EMDIOS exploits both state-of-the-art of computing capabilities and sophisticated optimization techniques, it can overcome many scalability and complexity problems. It can make users who are not even familiar with the optimization technology use EMDIOS easily to solve their design problems. The client of EMDIOS provides a front end for engineers to communicate the EMDIOS engine and the server controls and manages various resources luck as scheduler, analysis codes, and user interfaces. EMDIOS client supports data monitoring, design problem definition, request for analyses and other user tasks. Three main components of the EMDIOS are the Engineering Design Object Model which is a basic idea to construct EMDIOS, EMDIOS Language (EMDIO-L) which is a script language representing design problems, and visual modeling tools which can help engineers define design problems using graphical user interface. Several example problems are solved and EMDIOS has shown various capabilities such as ease of use, process integration, and optimization monitoring.