• 제목/요약/키워드: MDA-MB231

검색결과 281건 처리시간 0.021초

Anthocyanin의 Delphinidin이 MDA-MB-231 유방암세포에 미치는 영향 (Effects of Delphinidin in Anthocyanin on MDA-MB-231 Breast Cancer Cells)

  • 장혜연;이송희;안인정;이해님;김혜리;박영석;박병권;김병수;김상기;조성대;남정석;최창순;정지윤
    • 한국식품영양과학회지
    • /
    • 제43권2호
    • /
    • pp.231-237
    • /
    • 2014
  • 본 연구에서는 블루베리에 포함된 anthocyanin 중 delphinidin이 인간 유래의 MDA-MB-231 유방암세포의 성장을 억제시키고 apoptosis를 유발하는지 살펴보고 in vivo 실험에서도 항암효과가 나타나는지 확인하였다. 그 결과 cell viability를 보기 위한 MTT assay에서는 농도 의존적으로 암세포의 성장을 억제시켰으며, apoptosis의 확인을 위한 DAPI stain에서 농도 의존적으로 chromatin condensation이 유의적으로 증가하는 것을 확인하였다. 또한 western blot에서 암 억제 유전자인 p53 단백질이 증가하였고, anti-apoptotic 분자인 Bcl-2 단백질과 p-$GSK3{\beta}$ 단백질은 감소하였다. In vivo 실험에서는 대조군과 비교해 10 mg/kg delphinidin을 투여한 군에서 종양의 크기가 감소하였으며, TUNEL assay를 통해 apoptosis 세포 또한 통계학적으로 유의적인 증가가 관찰되어 종양 억제 효과를 확인하였다. 이상의 결과들로 볼 때, MDA-MB-231 유방암세포에서 delphinidin은 암세포의 증식을 억제시키고, apoptosis를 유발시키는 효과를 보이므로 암 예방제나 치료제로 개발될 수 있을 것으로 사료된다.

전이성 유방암 세포주에 대한 당목향의 항암효과탐색 (Anti-cancer Effects by Saussurea lappa Clarke in Highly-metastatic MDA-MB-231 Breast Cancer Cells)

  • 김치홍;최윤경;김우영;신용철;고성규
    • 동의생리병리학회지
    • /
    • 제25권6호
    • /
    • pp.968-974
    • /
    • 2011
  • Saussurea lappa Clarke is a well-known transitional medicine in Asia including Korea, China and Japan. It has been reported that Clarke has diverse effects such as anti-viral, anti-inflammatory, anti-cancer in human gastric cells and human prostate cancer cells. However, the anti-cancer effects and the mechanism of actions of Saussurea lappa Clarke are still unknown in breast cancer. In this study, we observed that Saussurea lappa Clarke inhibits the cell growth in a dose- and time-dependent manner in highly-metastatic MDA-MB-231 breast cancer cells. In order to examine whether Saussurea lappa Clarke suppresses cell growth inducing apoptosis cell death or cell cycle arrest, we analyzed DNA contents and cell cycle distribution using a flow cytometer and western blotting in MDA-MB-231 cells. We suggest that Saussurea lappa Clarke dose not induced apoptosis and induced G2/M phase cell cycle arrest. Moreover, Saussurea lappa Clarke also decreased the expression level of metastasis-angiogenesis releated protein such as VEGF. However, dose not changed the expression level of metastasis related protease MMP-1 in highly-metastatic MDA-MB-231 breast cancer cells. Therefore, Saussurea lappa Clarke might be good and useful chemotherapy agent highly-metastatic breast cancer patients.

Curcumin Inhibits TGF-β1-Induced MMP-9 and Invasion through ERK and Smad Signaling in Breast Cancer MDA-MB-231 Cells

  • Mo, Na;Li, Zheng-Qian;Li, Jing;Cao, You-De
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5709-5714
    • /
    • 2012
  • Objective: To evaluate the effects of curcumin on matrixmetalloproteinase-9 (MMP-9) and invasion ability induced by transforming growth factor-${\beta}1$ (TGF-${\beta}1$) in MDA-MB-231 cells and potential mechanisms. Methods: Human breast cancer MDA-MB-231 cells were used with the CCK-8 assay to measure the cytotoxicity of curcumin. After treatment with 10 ng/ml TGF-${\beta}1$, with or without curcumin (${\leq}10{\mu}M$), cell invasion was checked by transwell chamber. The effects of curcumin on TGF-${\beta}1$-stimulated MMP-9 and phosphorylation of Smad2, extracellular-regulated kinase (ERK), and p38 mitogen activated protein kinases (p38MAPK) were examined by Western blotting. Supernatant liquid were collected to analyze the activity of MMP-9 via zymography. Following treatment with PD98059, a specific inhibitor of ERK, and SB203580, a specific inhibitor of p38MAPK, Western blotting and zymography were employed to examine MMP-9 expression and activity, respectively. Results: Low dose curcumin (${\leq}10{\mu}M$) did not show any obvious toxicity to the cells, while $0{\sim}10{\mu}mol/L$ caused a concentration-dependent reduction in cell invasion provoked by TGF-${\beta}1$. Curcumin also markedly inhibited TGF-${\beta}1$-regulated MMP-9 and activation of Smad2, ERK1/2 and p38 in a dose- and time-dependent manner. Additionally, PD98059, but not SB203580, showed a similar pattern of inhibition of MMP-9 expression. Conclusion: Curcumin inhibited TGF-${\beta}1$-stimulated MMP-9 and the invasive phenotype in MDA-MB-231 cells, possibly associated with TGF-${\beta}$/Smad and TGF-${\beta}$/ERK signaling.

Enterocarpam-III Induces Human Liver and Breast Cancer Cell Apoptosis via Mitochondrial and Caspase-9 Activation

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1833-1837
    • /
    • 2015
  • An aristolactam-type alkaloid, isolated from Orophea enterocarpa, is enterocarpam-III (10-amino-2,3,4,6-tetramethoxyphenanthrene-1-carboxylic acid lactam). It is cytotoxic to various human and murine cancer cell lines; however, the molecular mechanisms remain unclear. The aims of this study were to investigate cytotoxic effects on and mechanism (s) of human cancer cell death in human hepatocellular carcinoma HepG2 and human invasive breast cancer MDA-MB-231 cells compared to normal murine fibroblast NIH3T3 cells. Cell viability was determined by MTT assay to determine $IC_{10}$, $IC_{20}$ and $IC_{50}$ levels, reactive oxygen species (ROS) production with 2',7'-dichlorohydrofluorescein diacetate and the caspase-3, -8 and -9 activities using specific chromogenic (p-nitroaniline) tetrapeptide substrates, viz., DEVD-NA, IETD-NA and LEHD-NA and employing a microplate reader. Mitochondrial transmembrane potential (MTP) was measured by staining with 3, 3'-dihexyloxacarbocyanine iodide ($DiOC_6$) and using flow cytometry. The compound was cytotoxic to HepG2 and MDA-MB-231 cells with the $IC_{50}$ levels of $26.0{\pm}4.45$ and $51.3{\pm}2.05{\mu}M$, respectively. For murine normal fibroblast NIH3T3 cells, the $IC_{50}$ concentration was $81.3{\pm}10.1{\mu}M$. ROS production was reduced in a dose-response manner in HepG2 cells. The caspase-9 and -3 activities increased in a concentration-dependent manner, whereas caspase-8 activity did not alter, indicating the intrinsic pathway activation. Enterocarpam-III decreased the mitochondrial transmembrane potential (MTP) dose-dependently in HepG2 cells, suggesting that the compound induced HepG2 cell apoptosis via the mitochondrial pathway. In conclusion, enterocarpam-III inhibited HepG2 and MDA-MB-231 cell proliferation and induced human HepG2 cells to undergo apoptosis via the intrinsic (mitochondrial) pathway and induction of caspase-9 activity.

NDRG2 Expression Increases Apoptosis Induced by Doxorubicin in Malignant Breast Caner Cells

  • Kim, Myung-Jin;Kang, Kyeong-Ah;Yang, Young;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.370-378
    • /
    • 2009
  • N-myc downstream-regulated gene 2 (NDRG2) has recently been found to be a tumor suppressor gene. Although it has been reported that NDRG2 expression in breast cancer cells decreases cell proliferation by inhibiting STAT3 activation via SOCS1 induction, the molecular mechanism of chemotherapeutic agent-induced apoptosis is not well known. To elucidate the effect of NDRG2 on the apoptotic pathway induced by doxorubicin, we established stable cell lines expressing NDRG2 and investigated the effect of NDRG2 expression on the doxorubicin-induced apoptosis. While STAT3 activation was remarkably inhibited by NDRG2 overexpression, the expression level of p21 was increased by NDRG2 expression. We confirmed that NDRG2-expressing cells treated with doxorubicin suppressed STAT3 activation and upregulated p21 expression. NDRG2 expression considerably enhanced TUNEL positive apoptotic cells, poly-ADP ribose polymerase (PARP) cleavage, release of cytochrome c to cytosol, and caspase-3 activity in doxorubicin-induced apoptosis. Bid expression in a resting state and after treatment with doxorubicin increased in MDA-MB-231-NDRG2 cells compared to MDA-MB-231-mock cells. Meanwhile, Bcl-$x_L$ expression decreased in MDA-MB-231-NDRG2 cells compared to MDA-MB-231-mock cells in a resting state and in doxorubicin-treated cells. Collectively, these data suggest that suppression of STAT3 activation by NDRG2 influences the sensitivity to doxorubicin-induced apoptosis of breast cancer cells and this may provide a potential therapeutic benefit to overcome the resistance against doxorubicin in breast cancer.

Effects of $\alpha$-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells

  • Na, Mi-Hee;Seo, Eun-Young;Kim, Woo-Kyoung
    • Nutrition Research and Practice
    • /
    • 제3권4호
    • /
    • pp.265-271
    • /
    • 2009
  • The role that antioxidants play in the process of carcinogenesis has recently gained considerable attention. $\alpha$-Lipoic acid, a naturally occurring disulfide molecule, is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathione peroxidase activity. In this study, we examined changes in the protein and mRNA expression associated with cell proliferation and apoptosis in MDA-MB-231 breast cancer cultured in the presence of various concentrations (0, 250, 500, and 1000 ${\mu}mol/L$) of $\alpha$-lipoic acid. The results revealed that $\alpha$-lipoic acid inhibited the growth of breast cancer cells in a dose-independent manner (P < 0.05). Additionally, $ErbB_2$ and $ErbB_3$ protein and mRNA expressions were significantly decreased in a dose-dependent manner in response to $\alpha$-lipoic acid (P < 0.05). Furthermore, the protein expression of phosphorylated Akt (p-Akt) levels and total Akt, and the mRNA expression of Akt were decreased dose-dependently in cells that were treated with $\alpha$-lipoic acid (P < 0.05). Bcl-2 protein and mRNA expressions were also decreased in cells that were treated with $\alpha$-lipoic acid (P < 0.05). However, Bax protein and mRNA expressions were increased in cells treated with $\alpha$-lipoic acid (P < 0.05). Finally, caspase-3 activity was significantly increased in a dose-dependent manner in cells treated with $\alpha$-lipoic acid (P < 0.05). In conclusion, we demonstrated that $\alpha$-lipoic acid inhibits cell proliferation and induces apoptosis in MDA-MB-231 breast cancer cell lines.

Stigmalactam from Orophea Enterocarpa Induces Human Cancer Cell Apoptosis Via a Mitochondrial Pathway

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10397-10400
    • /
    • 2015
  • Stigmalactam, an aristolactam-type alkaloid extracted from Orophea enterocarpa, exerts cytotoxicity against several human and murine cancer cell lines, but the molecular mechanisms remain elusive. The aims of this study were to identify the mode and mechanisms of human cancer cell death induced by stigmalactam employing human hepatocellular carcinoma HepG2 and human invasive breast cancer MDA-MB-231 cells as models, compared to normal murine fibroblasts. It was found that stigmalactam was toxic to HepG2 and MDA-MB-231 cells with $IC_{50}$ levels of $23.0{\pm}2.67{\mu}M$ and $33.2{\pm}4.54{\mu}M$, respectively, using MTT assays. At the same time the $IC_{50}$ level towards murine normal fibroblast NIH3T3 cells was $24.4{\pm}6.75{\mu}M$. Reactive oxygen species (ROS) production was reduced in stigmalactam-treated cells dose dependently after 4 h of incubation, indicating antioxidant activity, measured by using 2',7',-dichlorohydrofluorescein diacetate and flow cytometry. Caspase-3 and caspase-9 activities were increased in a dose response manner, while stigmalactam decreased the mitochondrial transmembrane potential dose-dependently in HepG2 cells, using 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, indicating mitochondrial pathway-mediated apoptosis. In conclusion, stigmalactam from O. enterocarpa was toxic to both HepG2 and MDA-MB-231 cells and induced human cancer HepG2 cells to undergo apoptosis via the intrinsic (mitochondrial) pathway.

Phorbol Ester TPA Modulates Chemoresistance in the Drug Sensitive Breast Cancer Cell Line MCF-7 by Inducing Expression of Drug Efflux Transporter ABCG2

  • Kalalinia, Fatemeh;Elahian, Fatemeh;Hassani, Mitra;Kasaeeian, Jamal;Behravan, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2979-2984
    • /
    • 2012
  • Recent studies have indicated a link between levels of cyclooxygenase-2 (COX-2) and development of the multidrug resistance (MDR) phenotype. The ATP-binding cassette sub-family G member 2 (ABCG2) is a major MDR-related transporter protein that is frequently overexpressed in cancer patients. In this study, we aimed to evaluate any positive correlation between COX-2 and ABCG2 gene expression using the COX-2 inducer 12-O-tetradecanoylphorbol-13-acetate (TPA) in human breast cancer cell lines. ABCG2 mRNA and protein expression was studied using real-time RT-PCR and flow cytometry, respectively. A significant increase of COX-2 mRNA expression (up to 11-fold by 4 h) was induced by TPA in MDA-MB-231 cells, this induction effect being lower in MCF-7 cells. TPA caused a considerable increase up to 9-fold in ABCG2 mRNA expression in parental MCF-7 cells, while it caused a small enhancement in ABCG2 expression up to 67 % by 4 h followed by a time-dependent decrease in ABCG2 mRNA expression in MDA-MB-231 cells. TPA treatment resulted in a slight increase of ABCG2 protein expression in MCF-7 cells, while a time-dependent decrease in ABCG2 protein expression was occurred in MDA-MB-231 cells. In conclusion, based on the observed effects of TPA in MDA-Mb-231 cells, it is proposed that TPA up-regulates ABCG2 expression in the drug sensitive MCF-7 breast cancer cell line through COX-2 unrelated pathways.

황금의 유방암세포주에 대한 항암작용 (Inhibition of cellular proliferation and apoptosis by Scutellaria Baicalensis in MDA-MB-231 breast cancer cells)

  • 용형순;고성규
    • 대한한방내과학회지
    • /
    • 제25권3호
    • /
    • pp.451-460
    • /
    • 2004
  • Objective : 황금의 유방암세포주에 대한 항암효과 및 기전에 대한 연구는 아직 미흡하며, 특히 에스트로젠리셉터를 가지지않은 유방암세포주인 MDA-MB-231에 대한 효과 및 기전에 대한 연구는 아직 발표된바 없어, 이에 대한 연구가 진행되었다. Methods : 인간 유방암세포주 MDA-MB-231 MTT assay를 이용 성장방해비율을 조사하였으며. FACS analysis를 이용 cell cycle analysis를 시행하였고, Western Blot Analysis 및 Annexin V analysis를 시행하였다. Results : MDA-MB-231에 대한 황금의 IC50는 180 ug/ml 이었으며 최대 세포성장억제효과는 $500{\mu}g/ml$로 한약재중 비교적 강한 세포독성을 보여 주었다. 유세포분석 에서 황금 $500{\mu}g/ml$의 농도를 72시간 투여한 경우 세포사멸(Sub Gl) 분율이 대조군의 1.7%에 비해 21%로 높아 현저한 용량의존적인 세포사멸현상을 보여주었으며, 세포사멸을 보다 명확히 규명할 수 있는 Annexin V analysis에서도 황금 $200{\mu}g/ml$농도일때 48시간에서 17%의 뚜렷한 세포사멸효과를 나타내었다. 한편 세포사멸촉진인자인 Bax, 세포사멸실행단백질인자인 caspase 3의 활성과 PARP의 분할은 세포사멸이 세포주기정지와 더불어 세포사멸의 과정에 p53이 관여함을 알 수 있다. 앞으로의 연구는 p53발현이 다른 세포주와 각 단백질의 억제제를 통해 인과적인 관련성을 즘 더 명확히 할 필요가 있어야 할 것으로 생각되어진다. Conclusion : 유방암의 예후에 있어 호르몬치료에 부적절함으로 인해 예후가 나쁜 에스트로젠리셉터 발현이 없는 유방암에 대해서도 황금이 탁월한 항암효과를 보여주고 있으며, 임상적으로 황금단독, 다른 항암약재와의 배합, 그리고 기존의 항암화학요법이나 방사선요법과의 병용투여를 통한 초기 및 진행된 유방암의 치료에 대한 새로운 접근의 실마리를 제공할 것으로 생각된다.

  • PDF

ER81-shRNA Inhibits Growth of Triple-negative Human Breast Cancer Cell Line MDA-MB-231 In Vivo and in Vitro

  • Chen, Yue;Zou, Hong;Yang, Li-Ying;Li, Yuan;Wang, Li;Hao, Yan;Yang, Ju-Lun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2385-2392
    • /
    • 2012
  • The lack of effective treatment targets for triple-negative breast cancers make them unfitted for endocrine or HER2 targeted therapy, and their prognosis is poor. Transcription factor ER81, a downstream gene of the HER2, is highly expressed in breast cancer lines, breast atypical hyperplasia and primary breast cancers including triple-negative examples. However, whether and how ER81 affects breast cancer carcinogenesis have remained elusive. We here assessed influence on a triple-negative cell line. ER81-shRNA was employed to silence ER81 expression in the MDA-MB-231 cell line, and MTT, colony-forming assays, and flow cytometry were used to detect cell proliferation, colony-forming capability, cell cycle distribution, and cell apoptosis in vitro. MDA-MB-231 cells stably transfected with ER81-shRNA were inoculated into nude mice, and growth inhibition of the cells was observed in vivo. We found that ER81 mRNA and protein expression in MDA-MB-231 cells was noticeably reduced by ER81-shRNA, and that cell proliferation and clonality were decreased significantly. ER81-shRNA further increased cell apoptosis and the residence time in $G_0/G_1$ phase, while delaying tumor-formation and growth rate in nude mice. It is concluded that ER81 may play an important role in the progression of breast cancer and may be a potentially valuable target for therapy, especially for triple negative breast cancer.