• 제목/요약/키워드: MDA-MB-231 cells (breast cancer cells)

검색결과 209건 처리시간 0.022초

인간유방암 MDA-MB-231 세포에서 청국장추출물에 의한 TNFα 발현억제 (Reduction of TNFα expression by Chungkookjang extracts in human breast cancer MDA-MB-231 cells)

  • 박잠언;강충경;김한복
    • 미생물학회지
    • /
    • 제52권3호
    • /
    • pp.380-382
    • /
    • 2016
  • 청국장은 대두발효식품으로 발효 중 생성된 다양한 펩타이드가 들어 있다. 이들 펩타이드가 포함된 청국장추출물을 세포에 처리하면 세포 신호전달에 영향을 미친다. 인간 유방암 MDA-MB-231 세포에 청국장추출물을 처리해 주었을 때 세포의 성장은 농도의존적으로 억제되었다. 청국장추출물이 유방암세포의 증식을 억제하였고 암과 염증이 관련이 있으므로, 청국장추출물이 염증 유전자의 하나인 $TNF{\alpha}$ 발현의 억제 여부를 알아 보았다. 인간유방암 MDA-MB 231 세포에 청국장 추출물을 처리하면 $TNF{\alpha}$ 발현은 억제되었다. $TNF{\alpha}$ 저해제는 자가면역질환 치료제로 개발되어 있다. 본 청국장추출물도 $TNF{\alpha}$ 억제 효과가 있으므로, 이들 자가면역 질환의 치료제로 개발될 수 있을 것이다.

Anti-Cancer Effect of IN-2001 in MDA-MB-231 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.313-319
    • /
    • 2012
  • In recent years, inhibition of HDACs has emerged as a potential strategy to reverse aberrant epigenetic changes associated with cancer, and several classes of HDAC inhibitors have been found to have potent and specific anticancer activities in preclinical studies. But their precise mechanism of action has not been elucidated. In this study, a novel synthetic inhibitor of HDAC, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide [IN-2001] was examined for its antitumor activity and the underlying molecular mechanisms of any such activity on human breast cancer cell lines. IN-2001 effectively inhibited cellular HDAC activity ($IC_{50}$ = 0.585 nM) inMDA-MB-231 human breast cancer cells. IN-2001 caused a significant dose-dependent inhibition of cell proliferation in estrogen receptor (ER) negative MDA-MB-231human breast cancer cells. Cell cycle analysis revealed that the growth inhibitory effects of IN-2001 might be attributed to cell cycle arrest at $G_0/G_1$ and/or $G_2$/Mphase and subsequent apoptosis in human breast cancer cells. These events are accompanied by modulating several cell cycle and apoptosis regulatory genes such as CDK inhibitors $p21^{WAF1}$ and $p27^{KIP1}$ cyclin D1, and other tumor suppressor genes such as cyclin D2. Collectively, IN-2001 inhibited cell proliferation and induced apoptosis in human breast cancer cells and these findings may provide new therapeutic approaches, combination of antiestrogen together with a HDAC inhibitor, in the hormonal therapy-resistant ER-negative breast cancers. In summary, our data suggest that this histone deacetylase inhibitor, IN-2001, is a novel promising therapeutic agent with potent antitumor effects against human breast cancers.

Effects of $\alpha$-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells

  • Na, Mi-Hee;Seo, Eun-Young;Kim, Woo-Kyoung
    • Nutrition Research and Practice
    • /
    • 제3권4호
    • /
    • pp.265-271
    • /
    • 2009
  • The role that antioxidants play in the process of carcinogenesis has recently gained considerable attention. $\alpha$-Lipoic acid, a naturally occurring disulfide molecule, is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathione peroxidase activity. In this study, we examined changes in the protein and mRNA expression associated with cell proliferation and apoptosis in MDA-MB-231 breast cancer cultured in the presence of various concentrations (0, 250, 500, and 1000 ${\mu}mol/L$) of $\alpha$-lipoic acid. The results revealed that $\alpha$-lipoic acid inhibited the growth of breast cancer cells in a dose-independent manner (P < 0.05). Additionally, $ErbB_2$ and $ErbB_3$ protein and mRNA expressions were significantly decreased in a dose-dependent manner in response to $\alpha$-lipoic acid (P < 0.05). Furthermore, the protein expression of phosphorylated Akt (p-Akt) levels and total Akt, and the mRNA expression of Akt were decreased dose-dependently in cells that were treated with $\alpha$-lipoic acid (P < 0.05). Bcl-2 protein and mRNA expressions were also decreased in cells that were treated with $\alpha$-lipoic acid (P < 0.05). However, Bax protein and mRNA expressions were increased in cells treated with $\alpha$-lipoic acid (P < 0.05). Finally, caspase-3 activity was significantly increased in a dose-dependent manner in cells treated with $\alpha$-lipoic acid (P < 0.05). In conclusion, we demonstrated that $\alpha$-lipoic acid inhibits cell proliferation and induces apoptosis in MDA-MB-231 breast cancer cell lines.

Phorbol Ester TPA Modulates Chemoresistance in the Drug Sensitive Breast Cancer Cell Line MCF-7 by Inducing Expression of Drug Efflux Transporter ABCG2

  • Kalalinia, Fatemeh;Elahian, Fatemeh;Hassani, Mitra;Kasaeeian, Jamal;Behravan, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2979-2984
    • /
    • 2012
  • Recent studies have indicated a link between levels of cyclooxygenase-2 (COX-2) and development of the multidrug resistance (MDR) phenotype. The ATP-binding cassette sub-family G member 2 (ABCG2) is a major MDR-related transporter protein that is frequently overexpressed in cancer patients. In this study, we aimed to evaluate any positive correlation between COX-2 and ABCG2 gene expression using the COX-2 inducer 12-O-tetradecanoylphorbol-13-acetate (TPA) in human breast cancer cell lines. ABCG2 mRNA and protein expression was studied using real-time RT-PCR and flow cytometry, respectively. A significant increase of COX-2 mRNA expression (up to 11-fold by 4 h) was induced by TPA in MDA-MB-231 cells, this induction effect being lower in MCF-7 cells. TPA caused a considerable increase up to 9-fold in ABCG2 mRNA expression in parental MCF-7 cells, while it caused a small enhancement in ABCG2 expression up to 67 % by 4 h followed by a time-dependent decrease in ABCG2 mRNA expression in MDA-MB-231 cells. TPA treatment resulted in a slight increase of ABCG2 protein expression in MCF-7 cells, while a time-dependent decrease in ABCG2 protein expression was occurred in MDA-MB-231 cells. In conclusion, based on the observed effects of TPA in MDA-Mb-231 cells, it is proposed that TPA up-regulates ABCG2 expression in the drug sensitive MCF-7 breast cancer cell line through COX-2 unrelated pathways.

The Inhibitory Effects of Forsythia Koreana Extracts on the Metastatic Ability of Breast Cancer Cells and Bone Resorption by Osteoclasts

  • Kim, Yu Li;Lee, Sun Kyoung;Park, Kwang-Kyun;Chung, Won-Yoon
    • Journal of Cancer Prevention
    • /
    • 제21권2호
    • /
    • pp.88-94
    • /
    • 2016
  • Background: Breast cancer is the most common malignant disease in women. The patients with advanced breast cancer develop metastasis to bone. Bone metastasis and skeletal-related events by breast cancer are frequently associated with the invasiveness of breast cancer cells and osteoclasts-mediated bone resorption. Forsythia koreana is used in oriental traditional medicine to treat asthma, atopy, and allergic diseases. The aim of this study was to evaluate the inhibitory effects of F. koreana extracts on the invasion of breast cancer cells and bone resorption by osteoclasts. Methods: Cell viability was measured by an MTT assay and the migration and invasion of MDA-MB-231 cells were detected by a Boyden chamber assay. The formation of osteoclasts and pit was detected using tartrate-resistant acid phosphatase staining and calcium phosphate-coated plates, respectively. The activities of matrix metalloproteinases (MMPs) and cathepsin K were evaluated by gelatin zymography and a cathepsin K detection kit. Results: The fruit and leaf extracts of F. koreana significantly inhibited the invasion of MDA-MB-231 cells at noncytotoxic concentrations. The fruit extract of F. koreana reduced the transforming growth factor ${\beta}1-induced$ migration, invasion and MMPs activities of MDA-MB-231 cells. In addition, the fruit, branch, and leaf extracts of F. koreana also inhibited the receptor activator of nuclear factor kappa-B ligand-induced osteoclast formation and osteoclast-mediated bone-resorbing activity by reducing the activities of MMPs and cathepsin K. Conclusions: The extracts of F. koreana may possess the potential to inhibit the breast cancer-induced bone destruction through blocking invasion of breast cancer cells, osteoclastogenesis, and the activity of mature osteoclasts.

인간유방암 MDA-MB-231세포에서 peptide H에 의한 TNFα 발현 억제 (Peptide H reduces Il-6 expression in human breast cancer MDA-MB-231 cells)

  • 성대일;박잠언;강충경;김한복
    • 미생물학회지
    • /
    • 제51권3호
    • /
    • pp.308-311
    • /
    • 2015
  • 청국장은 다양한 peptide류를 포함한다. 청국장 유래의 peptide H를 인간유방암 MDA-MB-231 세포에 처리했을 때, $TNF{\alpha}$ 발현은 뚜렷하게 억제되었다. $TNF{\alpha}$에 의해 유도되는 IL6 발현 역시, peptide H에 의해 감소될 수 있음을 시사해 준다. Peptide H구조는 glucocorticoid, dexamethasone과 전혀 유사하지 않아 그들과 다른 기작으로 $TNF{\alpha}$ 발현억제에 작용할 것을 시사해 준다. Peptide H는 $TNF{\alpha}$ 발현 억제 효과가 있으므로 보다 깊이 있는 연구를 바탕으로, 류마티스 관절염, 크론병 등의 치료제로 개발될 수 있기를 기대해 본다.

The expression of Rab5 and its effect on invasion, migration and exosome secretion in triple negative breast cancer

  • Lei Qiao;Chao Dong;Jiaojiao Zhang;Gang Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권2호
    • /
    • pp.157-165
    • /
    • 2023
  • Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and current therapeutic strategies are limited in their effectiveness. The expressions of Rab5 and the M2 tumor-associated macrophage marker CD163 in tissues were detected by Western blot. The migration and invasion of cells were determined using a Transwell assay. The expressions of the exosome markers were evaluated by Western blot. The polarization of human macrophages (THP-1) was determined by incubation of THP-1 cells with conditioned medium or exosomes collected from MDA-MB-231 cells with indicated transfections or by a coculture system of THP-1 and MDA-MB-231 cells. The M1 and M2 macrophage markers were evaluated by qRT-PCR. The expression of Rab5 in TNBC was significantly higher than that in normal breast tissue. Rab5 expressions in triple-negative and luminal A breast cancer were higher than those in other molecular subtypes. Higher CD163 expression was observed in triple-negative breast cancer and in triple-negative and luminal B subtypes. Rab5 knockdown suppressed but Rab5 overexpression promoted the migration and invasion capacity of MDA-MB-231 cells. The levels of CD63 and CD9 in the medium of Rab5 knockdown cells were lower than those in control cells, whereas higher levels of CD63 and CD9 were observed in Rab5 overexpression cells. Rab5 knockdown decreased the excretion but did not alter the diameter of the exosomes. Knockdown of Rab5 facilitated the anti-tumor polarization of macrophages, which was partially reversed by Rab5 overexpression. Therefore, Rab5 is expected to be a potential therapeutic target for triple-negative breast cancer.

신선초 추출물이 인체 유방암 세포 MDA-MB-231의 세포 사멸에 미치는 영향 (Effect of Angelica keiskei Extract on Apoptosis of MDA-MB-231 Human Breast Cancer Cells)

  • 정유진;강금지
    • 한국식품영양과학회지
    • /
    • 제40권12호
    • /
    • pp.1654-1661
    • /
    • 2011
  • AKE의 농도별 처리가 인체 유방암 세포 MDA-MB-231의 세포사멸에 미치는 영향을 확인하기 위하여 세포 화학적인 방법인 MTT 분석, 이중 핵 염색법(Hoechst 33342/EtBr staining), FACS를 통하여 세포사멸을 관찰하였다. MTT 분석 결과, 150 ${\mu}g$/mL 처리 군에서 대조군에 대비하여 약 50%의 세포사멸을 나타내었으며 세포사멸이 농도 의존적으로 증가되었고(p<0.05), 이중 핵 염색법을 이용하여 세포사의 구분 결과 능동적 세포예정사인 apoptosis가 농도 의존적으로 급격히 증가하였으며(p<0.05), 특히 150 ${\mu}g$/mL 처리군에서 현저한 증가율을 나타내었다. 보다 더 명확한 세포사멸을 확인하기 위하여 FACS를 이용한 apoptosis 측정 결과, 처리군 간 크게 차이를 보이며 농도 의존적으로 증가되었다. 세포사멸관련 mRNA 유전자 발현을 관찰한 결과, 세포사멸 억제 유전자 Bcl-2는 처리농도가 증가할수록 유의적 증가를 보였으며(p<0.05), 세포사멸 유도 유전자 Bax는 유의적 감소를 나타내었다(p<0.05). 세포사멸의 지표인 Bcl-2/Bax의 비율은 농도 의존적인 감소를 나타내었으며(p<0.05), 세포사멸유도의 마지막 단계의 실행자인 caspase-3의 활성도 첨가 농도 의존적으로 증가하여 세포사멸을 유도하는 것으로 확인되었다(p<0.05). 결론적으로, AKE는 유방암 세포 MDA-MB-231의 세포사멸을 유도하는 것으로 나타나 신선초의 항암효과의 가능성을 제시해주었다. 향후 in vivo 실험에서도 신선초의 항암효과에 대한 심층적 연구가 이뤄져야 할 것으로 사료된다.

Antiproliferative Properties of Methanolic Extract of Nigella sativa against the MDA-MB-231 Cancer Cell Line

  • Dilshad, Ahmad;Abulkhair, Omalkhair;Nemenqani, Dalal;Tamimi, Waleed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5839-5842
    • /
    • 2012
  • Breast cancer is the most commonly diagnosed cancer in women in the world and is one of the leading causes of death due to cancer. Health benefits have been linked to additive and synergistic combinations of phytochemicals in fruits and vegetables. Nigella sativa has been shown to possess anti-carcinogenic activity, inhibiting growth of several cancer cell lines in vitro. However, the molecular mechanisms of the anti-cancer properties of Nigella sativa phytochemical extracts have not been completely understood. Our data showed that Nigella sativa extracts significantly inhibited human breast cancer MDA-MB-231 cell proliferation at doses of $2.5-5{\mu}g/mL$ (P<0.05). Apoptotic induction in MDA-MB-231 cells was observed in a dose-dependent manner after exposure to Nigella sativa extracts for 48 h. Real time PCR and flow cytometry analyses suggested that Nigella sativa extracts possess the ability to suppress the proliferation of human breast cancer cells through induction of apoptosis.

Lycopene Inhibits Proliferation, Invasion and Migration of Human Breast Cancer Cells

  • Koh, Min-Soo;Hwang, Jin-Sun;Moon, A-Ree
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.92-98
    • /
    • 2010
  • Breast cancer has been estimated as one of the most common causes of cancer death among women. The major cause of death from breast cancer is the metastatic spread of the disease from the primary tumor to distant sites in the body. Lycopene is one of the major carotenoids in fruits and vegetables including tomatoes. Epidemiological studies have shown that the dietary intake of lycopene is associated with decreased risk of cancer. Although mounting evidence shows the chemopreventive effect of lycopene, the role of lycopene in the prevention of metastatic potential of breast cancer has not been determined yet. In the present study, we investigated the inhibitory effect of lycopene on invasive and migratory phenotypes of two highly aggressive breast cancer cell lines, H-Ras-transformed MCF10A human breast epithelial cells (H-Ras MCF10A) and MDA-MB-231 human breast cancer cells. Here, we report that lycopene significantly inhibits invasion and migration as well as proliferation of H-Ras MCF10A and MDA-MB-231 cells. This study suggested an in vitro anti-cancer and anti-metastatic potential of lycopene. We also showed that activations of ERKs and Akt were inhibited by lycopene in H-Ras MCF10A cells, suggesting that the ERKs and Akt signaling pathways may be involved in lycopene-induced anti-proliferative and/or anti-invasive/migratory effects in these cells. Taken in conjunction with the fact that breast cancer metastasis is one of the most lethal malignancies in women, our findings may provide useful information for the application of lycopene in establishing strategy to prevent the metastatic breast cancer.