• 제목/요약/키워드: MDA-MB-231 cells (breast cancer cells)

검색결과 212건 처리시간 0.028초

국화과 추출물의 암세포 증식 억제 효과 (induction of Apoptosis in Human Cancer Cells with Compositae Extracts)

  • 안인정;권중기;이진석;박하승;김동찬;최병준;이규민;박용진;정지윤
    • 한국식품영양과학회지
    • /
    • 제41권5호
    • /
    • pp.584-590
    • /
    • 2012
  • 국화과 꽃은 우리나라에서 전통적으로 항염증과 항산화 치료에 사용되었다. 본 연구에서는 국화과 추출물이 인간 위암세포 AGS, 인간 유방암세포 MDA-MB-231과 SK-BR-3 암세포에서 성장을 억제하고 세포자멸사를 유발하는지 확인하였다. AGS, MDA-MB-231 그리고 SK-BR-3 암세포의 성장을 MTT로 측정하였다. 14종의 국화과 추출물을 24시간 동안 50, 100, 200 ${\mu}g/mL$의 농도로 처치하였다. 한라구절초 전초, 포천구절초 전초, 삼잎국화 지하부, 낙동구절초 전초, 산국 전초 그리고 해국 꽃 추출물에서 암세포의 성장을 농도 의존적으로 억제시켰다. 우리나라 여성에서 가장 많이 발생하는 유방암세포인 MDA-MB-231 암세포에서 세포자멸사를 확인하기 위해 DAPI 염색을 수행하였다. MTT assay에서 암세포를 억제시킨 6종의 국화과 추출물중 3종인 한라구절초 전초, 포천구절초 전초, 삼잎국화 지하부 추출물을 처치한 세포에서 핵의 응축이 농도 의존적으로 존재함을 형광현미경으로 확인하였다(${\times}200$). 세포자멸사에 관련된 단백질의 발현을 알아보기 위해서 western blot으로 확인하였다. 한라구절초 전초, 포천구절초 전초, 삼잎국화 지하부 추출물을 25, 50 ${\mu}g/mL$의 농도로 24시간 동안 MDA-MB-231 암세포 처치 후 cell lysate를 얻어 Bcl-2, Bax 그리고 p53의 변화를 관찰하였다. 한라구절초 전초, 포천구절초 전초 그리고 삼잎국화 지하부에서 anti-apoptotic 분자인 Bcl-2 단백질은 감소하고 반대로 pro-apoptotic 분자인 Bax와 p53 단백질은 증가하였다. 결과적으로 한라구절초 전초, 포천구절초 전초 그리고 삼잎국화 지하부 추출물은 유방암 세포의 성장을 억제하고 apoptosis를 유발시키므로 암예방제나 치료제로 개발될 수 있을 것으로 사료된다.

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.

Trichostatin A Induces Apoptotic Cell Death in Human Breast Carcinoma Cells through Activation of Caspase-3

  • Kim, Nsm-Deuk;Kim, Seaho;Choi, Yung-Hyun;Im, Eun-Ok;Lee, Ji-Hyeon;Kim, Dong-Kyoo
    • Journal of Life Science
    • /
    • 제10권2호
    • /
    • pp.39-44
    • /
    • 2000
  • Trichostatin A (TSA) is a Streptomyces product, which inhibits the enzyme activity of histone deacetylase. It is also known as an inducer of apoptosis in several human cancer cell lines. In this study, we investigated the mechanism of apoptosis induced by TSA in MDA-MB-231 human breast carcinoma cells. The cytotoxicity of TSA on MDA-MB-231 cells was assessed by MTT assay. The cell viability was decreased dose-dependently and the IC\ulcorner value was about 100 ng/ml after 48 h treatment with TSA. Morphological change and DNA ladder formation, the biochemical hallmarks of apoptotic cell death, were observed after treatment of TSA in a concentration-dependent manner, which was accompanied with cleavage of poly(ADP-ribose) polymerase and $\beta$-catenin, and activation of caspase-3. TSA treatment up-regulated the expression of a cyclin-dependent kinase inhibitor p21 (Wafl/Cip1) protein, a key regulatory protein of the cell cycle. However, there is no detectable change of both Bcl-2 and Bax expressions. These results demonstrated that TSA might inhibit cell growth through apoptosis in human breast carcinoma MDA-MB-231 cells.

  • PDF

Inhibitory Effect of D-chiro-inositol on Both Growth and Recurrence of Breast Tumor from MDA-MB-231 Cancer Cells

  • Kim, Yoon-seob;Park, Ji-sung;Kim, Minji;Hwang, Bang Yeon;Lee, Chong-kil;Song, Sukgil
    • Natural Product Sciences
    • /
    • 제23권1호
    • /
    • pp.35-39
    • /
    • 2017
  • D-chiro-inositol (DCI) is a secondary messenger in insulin signal transduction. It is produced in vivo from myo-inositol via action of epimerase. In this study, we evaluated antitumor activity of DCI against human breast cancer both in vitro and in vivo. In order to determine the inhibitory effects of DCI on growth of human breast cancer cells (MDA-MB-231), two different assessment methods were implemented: MTT assay and mouse xenograft assay. MTT assay demonstrated downturn in cell proliferation by DCI treatment (1, 5, 10, 20 and 40 mM) groups by 18.3% (p < 0.05), 17.2% (p < 0.05), 17.5% (p < 0.05), 18.4% (p < 0.05), and 24.9% (p < 0.01), respectively. Also, inhibition of tumor growth was investigated in mouse xenograft model. DCI was administered orally at the dose of 500 mg/kg and 1000 mg/kg body weight to treat nude mouse for 45 consecutive days. On the 45th day, tumor growth of DCI (500 mg/kg and 1000 mg/kg) groups was suppressed by 22.1% and 67.6% as mean tumor volumes were $9313.8{\pm}474.1mm^3$ and $3879.1{\pm}1044.1mm^3$, respectively. Furthermore, breast cancer stem cell (CSC) phenotype ($CD44^+/C24^-$) was measured using flow cytometry. On the 46th day, CSC ratios of DCI (500 mg/kg) and co-treatment with doxorubicin (4 mg/kg) and DCI (500 mg/kg) group decreased by 24.7% and 53.9% (p < 0.01), respectively. Finally, from tumor recurrence assay, delay of 5 days in the co-treatment group compared to doxorubicin (4 mg/kg) alone group was observed. Based on these findings, we propose that DCI holds potential as an anti-cancer drug for treatment of breast cancer.

씀바귀 추출물이 인체유방암세포의 활성 산소 및 Bcl-2 Family에 미치는 영향 (Effects of Ixeris dentata Extract on Radical Oxygen Species and Bcl-2 Family in Human Breast Cancer Cells)

  • 김희정;강금지
    • 동아시아식생활학회지
    • /
    • 제24권6호
    • /
    • pp.739-747
    • /
    • 2014
  • 본 연구는 인체유방암세포인 MDA-MB-231세포를 이용하여 IDE를 처리하였을 때 세포사멸에 미치는 영향을 세포화학적 방법으로 확인하였다. IDE를 각각 0, 20, 30 및 $40{\mu}g/mL$ 첨가하여 24시간 배양한 후, 세포증식 억제, 막투과성, 세포내 ROS 분석 및 세포사멸 단계의 특성을 FACS 분석하고, RT-PCR에 의한 사멸관련 유전자 중 Bax/Bcl-2 ratio 분석을 통하여 IDE의 항암작용의 조절작용을 밝히고자 하였다. MTT의 세포 증식 억제는 첨가된 IDE의 농도에 따라 유의적으로 감소하였다(p<0.05). 이와 동시에, trypan blue에 대한 염색성과 DCF-DA 형광 분석의 결과는 각각, 막투과성과 세포내 ROS 농도가 모두 농도 의존적으로 증가됨을 보였다(p<0.05). 이와 같은 IDE 농도에 따른 세포화학적 변화 중에서 세포의 초기사멸에서 후기사멸 과정으로 급격한 사멸단계의 변화가 특히, IDE 농도 30과 $40{\mu}g/mL$에서 일어났다. RT-PCR 분석에 의한 Bax/Bcl-2 ratio도 IDE 농도 30과 $40{\mu}g/mL$에서 급격히 증가하였다(p<0.05). 이와 같은 세포화학적 결과와 RT-PCR 결과를 종합해 볼 때, IDE의 유방암세포(MDA-MB-231)에 대한 세포사멸작용은 막 투과성의 증가와 ROS 증가를 통하여 세포에 점진적인 손상을 일으키며, 이는 세포의 생화학적 변화도 초래하여 세포 증식 억제를 감소시켜, 결국 세포내의 사멸관련 유전자 지표인 Bax/Bcl-2 ratio를 크게 변화시키는 일련의 세포사멸을 점진적으로 유도시켜 항유방암의 효과의 가능성을 제시하였다.

13(E)-Labd-13-ene-8$\alpha$, 15-diol isolated from Brachyglottis monroi Induces Apoptosis on Human Breast Cancer MDA-MB231 cell line

  • Lim, Jin-A;Lee, Jeong-Ho;Lee, In-A;Nigel, B;Baek, Seung-Hwa
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.141.1-141.1
    • /
    • 2003
  • The inhibitory effect of 13(E)-Labd-13-ene-8$\alpha$ 15-diol(1), isolated from the ethanol extract of Brachyglottis monroi, on the proliferation of human breast cancer MDA-MB231 cells was examined. Compound (1) at concentration as high as 16$\mu$/$m\ell$ has inhibited the proliferation of MDA-MB231 and this cytotoxic effect was increased in a time and dose-dependent manners. (omitted)

  • PDF

Fangchinoline Inhibits Cell Proliferation Via Akt/GSK-3beta/cyclin D1 Signaling and Induces Apoptosis in MDA-MB-231 Breast Cancer Cells

  • Wang, Chang-Dong;Yuan, Cheng-Fu;Bu, You-Quan;Wu, Xiang-Mei;Wan, Jin-Yuan;Zhang, Li;Hu, Ning;Liu, Xian-Jun;Zu, Yong;Liu, Ge-Li;Song, Fang-Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.769-773
    • /
    • 2014
  • Fangchinoline (Fan) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The effects of Fan on cell growth and proliferation in breast cancer cells remain to be elucidated. Here, we show that Fan inhibited cell proliferation in the MDA-MB-231 breast cancer cell line through suppression of the AKT/Gsk-3beta/cyclin D1 signaling pathway. Furthermore, Fan induced apoptosis by increasing the expression of Bax (relative to Bcl-2), active caspase 3 and cytochrome-c. Fan significantly inhibited cell proliferation of MDA-MB-231 cells in a concentration and time dependent manner as determined by MTT assay. Flow cytometry analysis demonstrated that Fan treatment of MDA-MB-231 cells resulted in cell cycle arrest at the G1 phase, which correlated with apparent downregulation of both mRNA and protein levels of both PCNA and cyclin D1. Further analysis demonstrated that Fan decreased the phosphorylation of AKT and GSK-3beta. In addition, Fan up-regulated active caspase3, cytochrome-c protein levels and the ratio of Bax/Bcl-2, accompanied by apoptosis. Taken together, these results suggest that Fan is a potential natural product for the treatment of breast cancer.

Synthesis and Evaluation of 2-[123I]iodoemodin for a Potential Breast Cancer Imaging Agent

  • Park, Jeong-Hoon;Kim, Sang-Wook;Yang, Seung-Dae;Hur, Min-Goo;Chun, Kwon-Soo;Yu, Kook-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.595-598
    • /
    • 2008
  • Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) is a natural chemotherapeutic compound with diverse biological properties including an antitumor activity. Emodin, a specific inhibitor of the protein tyrosine kinase, has a number of cellular targets in related to it. Its inhibition activity affects the mammalian cell cycle regulation in specific oncogene. Practically, it has been proven to inhibit HER-2/neu tyrosine kinase expressing breast cancer cells as an anticancer agent. 2-[123I]iodoemodin has been synthesized and evaluated human breast cancer cells (MDA-MB-231, MCF-7, fibroblast as a control) which express basal levels of HER-2/neu tyrosine kinase to investigate its suitability as a breast cancer imaging agent and 2-iodoemodin has been synthesized as a standard compound. The radiochemical yield of the 2-[123I]iodoemodin was about 72% and its radiochemical purity was over 97% after purification. The radioactivity of the 2-[123I]iodoemodin was increased in a time dependent manner in both cell lines and the ratio of MDA-MB-231 and MCF7 to fibroblast was 2.9 and 1.7, respectively.

Luteolin-loaded Phytosomes Sensitize Human Breast Carcinoma MDA-MB 231 Cells to Doxorubicin by Suppressing Nrf2 Mediated Signalling

  • Sabzichi, Mehdi;Hamishehkar, Hamed;Ramezani, Fatemeh;Sharifi, Simin;Tabasinezhad, Maryam;Pirouzpanah, Mohammadbagher;Ghanbari, Parisa;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5311-5316
    • /
    • 2014
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) has been recognized as a transcription factor that controls mechanisms of cellular defense response by regulation of three classes of genes, including endogenous antioxidants, phase II detoxifying enzymes and transporters. Previous studies have revealed roles of Nrf2 in resistance to chemotherapeutic agents and high level expression of Nrf2 has been found in many types of cancer. At physiological concentrations, luteolin as a flavonoid compound can inhibit Nrf2 and sensitize cancer cells to chemotherapeutic agents. We reported luteolin loaded in phytosomes as an advanced nanoparticle carrier sensitized MDA-MB 231 cells to doxorubicin. In this study, we prepared nano phytosomes of luteolin to enhance the bioavailability of luteolin and improve passive targeting in breast cancer cells. Our results showed that cotreatment of cells with nano particles containing luteolin and doxorubicin resulted in the highest percentage cell death in MDA-MB 231cells (p<0.05). Furthermore, luteolin-loaded nanoparticles reduced Nrf2 gene expression at the mRNA level in cells to a greater extent than luteolin alone (p<0.05). Similarly, expression of downstream genes for Nrf2 including Ho1 and MDR1 were reduced significantly (p<0.05). Inhibition of Nrf-2 expression caused a marked increase in cancer cell death (p<0.05). Taken together, these results suggest that phytosome technology can improve the efficacy of chemotherapy by overcoming resistance and enhancing permeability of cancer cells to chemical agents and may thus be considered as a potential delivery system to improve therapeutic protocols for cancer patients.

Antiestrogen, Trans-Tamoxifen Modulation of Human Breast Cancer Cell Growth

  • Lee, Hyung-Ok;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • 제20권6호
    • /
    • pp.572-578
    • /
    • 1997
  • To gain further insight into how antiestrogens modulate cell function, the effects of antiestrogen on cell proliferation were studied in human breast cancer cells. We examined the effects of trans-tamoxifen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Trans-tamoxifen $(1{\mu}M)$ markedly inhibited the estrogen stimulated proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor $(1.15{\pm}0.03 pmole/mg protein)$ over that of control. In T47D cells that contained low levels of estrogen receptor $(0.23{\pm}0.05 pmole/mg protein)$, trans-tamoxifen $(1{\mu}M)$ showed minimal inhibition of estrogen stimulated cell proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by trans-tamoxifen treatment. These results showed their sensitivity to growth inhibition by antiestrogen conrrelated well with their estrogen receptor content. Also we examined the effect of antiestrogen on cellular progestrone receptor level as well as plasminogen activator activity in MCF-7 cells. Trans-tamoxifen $(1{\mu}M)$ showed maximal inhibition of estrogen stimulated progestrone receptor level as well as plasminogen activator activity in MCF-7 cells that were stimulated by estrogen. It is not clear whether these inhibitions of progestrone receptor and plasminogen activator activity by estrogen are related to the antiestrogen inhibition of cell proliferation of MCF-7 cells. From the results of this study, it is clearly demonstrated that trans-tamoxifen is an antiestrogen in MCF-7 human breast cancer cells. Our data suggest that the biological effectiveness of trans-tamoxifen appear to result from its affinity of interaction with the estrogen receptor.

  • PDF