• 제목/요약/키워드: MCFC(molten carbonate fuel cell)

Search Result 154, Processing Time 0.024 seconds

A Study on the Development of Anode Material for Molten Carbonate Fuel Cell (용융탄산염 연료전지의 양극 대체재료의 개발에 관한 연구)

  • 황응림;김선지;강성군
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.293-299
    • /
    • 1993
  • In order to investigate the effect of Al addition on the electrochemical performance and structural stability of porous Ni anode for molten carbonate fuel cell, porous Ni anodes containing Al up to 10 wt% were fabricated by the tape casting technique. In this study half-cell performance of the anodes was evaluated by anodic polarization in the simulated MCFC anode condition(650$^{\circ}C$ , 80% H$_2$+20% CO$_2$). At the anodic current of 150 ㎃/$\textrm{cm}^2$, the polarizations for H$_2$oxidation of the anode was about 100 ㎷. The sintering and creep resistance of Ni-Al anodes was higher than those of the pure Ni anode. It was considered that the increase of sintering and creep resistance was due to the formation of Al$_2$O$_3$ on the surface of Ni particles.

  • PDF

Life Cycle Assessment (LCA) and Energy Efficiency Analysis of Fuel Cell Based Energy Storage System (ESS) (연료전지 기반 에너지저장 시스템의 환경 전과정평가 및 에너지 효율성 분석)

  • KIM, HYOUNGSEOK;HONG, SEOKJIN;HUR, TAK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.156-165
    • /
    • 2017
  • This study quantitatively assessed the environmental impacts of fuel cell (FC) systems by performing life cycle assessment (LCA) and analyzed their energy efficiencies based on energy return on investment (EROI) and electrical energy stored on investment (ESOI). Molten carbonate fuel cell (MCFC) system and polymer electrolyte membrane fuel cell (PEMFC) system were selected as the fuel cell systems. Five different paths to produce hydrogen ($H_2$) as fuel such as natural gas steam reforming (NGSR), centralized naptha SR (NSR(C)), NSR station (NSR(S)), liquified petroleum gas SR (LPGSR), water electrolysis (WE) were each applied to the FCs. The environmental impacts and the energy efficiencies of the FCs were compared with rechargeable batteries such as $LiFePO_4$ (LFP) and Nickel-metal hydride (Ni-MH). The LCA results show that MCFC_NSR(C) and PEMFC_NSR(C) have the lowest global warming potential (GWP) with 6.23E-02 kg $CO_2$ eq./MJ electricity and 6.84E-02 kg $CO_2$ eq./MJ electricity, respectively. For the impact category of abiotic resource depletion potential (ADP), MCFC_NGSR(S) and PEMFC_NGSR(S) show the lowest impacts of 7.42E-01 g Sb eq./MJ electricity and 7.19E-01 g Sb eq./MJ electricity, respectively. And, the energy efficiencies of the FCs are higher than those of the rechargeable batteries except for the case of hydrogen produced by WE.

Fuel Cell Performance by the Impedance Method (임피던스법을 적용한 연료전지 성능규명)

  • 김귀열;서장수;박용필;이준응
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.157-159
    • /
    • 2001
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at 650$^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of Fe/20Cr/Ti alloys has been done in (62+38)mol% (Li+K)CO$_3$ melt at 923K by using steady state polarization and electrochemical impedance spectroscopy method. And, The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for SOFC, by the way, Ni-YSZ materials are used as anode of SOFC widely. So in this experiments, we investigated the optimum content of Ni, by the impedance characteristics, overvoltage. As a result, the performance of Ni-YSZ anode(47vo1%) was bettor excellent than the others.

  • PDF

The Design and Test of Ejectors for a 75-kW Fuel Cell System (75kW급 연료전지 시스템의 이젝터 설계 및 시험)

  • Kim, Beom-Joo;Kim, Do-Hyeong;Lim, Hee-Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.678-685
    • /
    • 2011
  • An Ejector enhances system efficiency, are easily operated, have a mechanically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 75-kW Molten Carbonate Fuel Cell (MCFC) system at KEPCO Research Institute. In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In the first place, a few sample ejectors were manufacured and the entrainment ratio was measured at a dummy stack. Through this experiment, the optimum ejector was chosen. The 75-kW MCFC system equipped with this optimum ejector was operated successfully.

Fuel Cell Performance by the Impedance Method (임피던스법을 이용한 연료전지의 특성 연구)

  • 서장수;김귀열;명기환;이성일;김용주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.927-933
    • /
    • 2000
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at 650$^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of Fe/20Cr/Ti alloys has been done in (62+38)mol% (Li+K)CO3 melt at 923K by using steady state polarization and electrochemical impedance spectroscopy method. And, The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for SOFC, by the way , Ni-YSZ materials are used as anode of SOFC widely. So in this experiments, we investigated the optimum content of Ni, by the impedance characteristics, overvoltage. As a results, the performance of Ni-YSZ anode(40vo1%) was better excellent than the others.

  • PDF

The corrosion-resistant of Al-coated xstainless in molten carbonate (알루미늄 코팅처리 스테인레스강의 융탄산염 내부식성)

  • 조남웅;장세기;전재호;신정철
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.3-11
    • /
    • 1998
  • Molten Carbonate Fuel cell is a promising new type electric power generation system which can achieve high efficiency, lower matrrial cost and high operating temperature Making internal reforming possible. Although the development of the MCEC is progressing rapidly toward commercialization, two important tchological problems such as dissolution of NiO cathode and not corrosion of metallic separator plate must be resolved. Because MCFC is operated at $650^{\circ}C$ and the electrolyte is very corrosive, corrosion-resistance of separator plated against oxidation abd molten carbonate is required. Al-coating on separator material for corrosion-resistance was carried out by painting, thermal spraying. hot dipping and vacuum vapour deposition. The corrosion of Al-coated STS 316S and 316L in molten carbonate at $700^{\circ}C$was studied. Vacuum vapour deposition and thermal spraing for Al-coating on STS 310S and 316L were the most effective methods for protecting thestainless steel corrosion in molten carbonate.

  • PDF

A Study on the Operation Condition by Electrical Fault in the High Temperature Fuel Cell Plant (고온 연료전지 발전단지의 내부계통 고장에 의한 운전환경에 대한 분석)

  • Chong, Young-Whan;Chai, Hui-Seok;Kim, Jae-Chul;Cho, Sung-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.51-59
    • /
    • 2013
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack, increases in the power output of high temperature fuel cell typically must be made at a slow rate. So, the short time interruption of high temperature fuel cell causes considerable generated energy losses. Because of the characteristic of high temperature fuel cell, we analyzed the impact of electrical fault in the fuel cell plant on other fuel cell generators in the same plant site. A various grounding configuration and voltage sag are analyzed. Finally, we presented the solution to minimize the effect of fault on other fuel cell generators.

Corrosion Performance of Separator for Molten Carbonate Fuel Cell (용융탄산염형 연료전지의 분리판 내식성 향상)

  • Kim, G.Y.;Eom, S.W.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1387-1388
    • /
    • 1997
  • The MCFC has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of Fe/20Cr/Ti alloys has been done in (62+38)mol% (Li+K)CO3 melt at 923K by using steady state polarization and electrochemical impedance spectroscopy method.

  • PDF

Anode Fabrication and Characterization of MCFC (MCFC의 Anode 제작과 특성)

  • Kim, G.Y.;Eom, S.W.;Kim, I.S.;Yun, M.S.;Moon, K.H.;Youn, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.854-856
    • /
    • 1992
  • The molten carbonate fuel cell has conspicuous features and high potential in being used as an energy converter of various fuels to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at 650 [$^{\circ}C$] have many problems. This study has examined fabricating methods and specimen characteristics of porous anode electrode.

  • PDF