• 제목/요약/키워드: MCF7 cells

검색결과 741건 처리시간 0.037초

CYP4501Al gene expression by TCDD in Hepa I cells.

  • Cha Y. Baek;Kim, Yeo W.;Yhun. Y. Sheen
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.139-139
    • /
    • 1998
  • Effects of TCDD and flavonoids on ethoxyresorufin deethylase in Hepa I cells and MCF-7 human breast cancer cells were examined. TCDD treatment have resulted in the stimulation of ethoxyresorufin deethylase activity based on fluorometry in Hepa I in dose and time dependent manner. 0.1 nM TCDD showed maximal stimulation of ethoxyresorufin deethylase activity and 24 hour treatment also showed maximal stimulation of ethoxyresorufin deethylase activity. In MCF-7 human breast cancer cells, untreated cells showed high basal level of ethoxyresorufin deethylase activity. TCDD treatment to MCF-7 cells resulted minor stimulation of ethoxyresorufin deethylase activity compared to that in Hepa I cells. Various chemicals were tested for ethoxyresorufin deethylase activity in both cell lines. Flavonoids, such as quercetin showed an inhibition of ethoxyresorufin deethylase activity that is stimulated with TCDD or 3-Methylcholanthrene. Estrogen and estrogen metabolites such as 16a-estriol also affects the ethoxyresorufin deethylase activity in MCF-7 cells.

  • PDF

MCF-7 유방암 세포에서 AMPK 활성에 의한 conjugated linoleic acid의 apoptosis 유도에 관한 연구 (Conjugated Linoleic Acid Induces Apoptosis by Activating AMPK in MCF-7 Breast Cancer Cells)

  • 인선교;김현숙;박옥진;김영민
    • 생명과학회지
    • /
    • 제18권12호
    • /
    • pp.1679-1685
    • /
    • 2008
  • 본 연구는 쇠고기와 유제품에 들어 있는 CLA의 항암효과를 조사하기 위하여 수행되었다. 이 실험을 위하여 MCF-7 인체 유방암 세포주를 사용하였으며, CLA를 처리했을 때 MCF-7 세포의 증식은 CLA의 농도가 증가할수록, 또한 일정한 농도에서는 시간이 경과함에 따라 의존적으로 억제되었다. 이와 같이 암세포의 증식이 억제되는 이유는 Hoechst 33342 염색을 이용한 chromatin staining 및 ROS의 활성 측정실험 결과, apoptosis와 연관이 있는 것으로 확인되었다. CLA 처리에 의한 apoptosis가 AMPK 및 COX-2 단백질의 활성 발현과는 어떤 연관성이 있는지를 조사하기 위하여 Western blot 실험을 실시한 결과, CLA 처리에 따라 AMPK의 활성이 증가되었고, COX-2의 발현은 감소됨으로써, MCF-7 세포에서 apoptosis가 유도되었다는 것을 알 수 있었다. 본 연구를 통하여 조사한 CLA의 항암효과로부터, 향후 다른 식품에 포함된 성분들에서도 암세포의 증식 억제와 apoptosis의 유도를 연구할 수 있는 기초 자료를 제시한 것이라고 할 수 있다.

The role of ginseng total saponin in transient receptor potential melastatin type 7 channels

  • Kim, Byung Joo
    • Animal cells and systems
    • /
    • 제16권5호
    • /
    • pp.376-384
    • /
    • 2012
  • Although ginsenosides have a variety of physiologic or pharmacologic functions in various regions, there are only a few reports on the effects of transient receptor potential melastatin 7 (TRPM7) channels. Here, we showed evidence suggesting that TRPM7 channels play an important role in ginseng total saponin (GTS)-mediated cellular injury. The combination techniques of electrophysiology, pharmacological analysis, small interfering RNA (siRNA) method and cell death assays were used. GTS depolarized the resting membrane potentials and decreased the amplitude of pacemaker potentials in cultured interstitial cells of Cajal (ICCs) in gastrointestinal (GI) tract. The TRPM7-like currents in single ICCs and the overexpressing TRPM7 in HEK293 cells were inhibited by GTS. However, GTS had no effect on $Ca^{2+}$-activated $Cl^-$ conductance. GTS inhibited the survival of human gastric (AGS) and brea (MCF-7) adenocarcinoma cells. Also, GTS inhibited the TRPM7-like currents in AGS and MCF-7 cells. The GTS-mediated cytotoxicity was inhibited by TRPM7-specific siRNA. In addition, we showed that overexpression of TRPM7 channels in HEK293 cells was inhibited by GTS. Thus, TRPM7 channels are involved in GTS-mediated cell death in AGS and MCF-7 cells, and these channels may represent a novel target for physiological disorders where GTS plays an important role.

Involvement of melastatin type transient receptor potential 7 channels in ginsenoside Rd-induced apoptosis in gastric and breast cancer cells

  • Kim, Byung Joo
    • Journal of Ginseng Research
    • /
    • 제37권2호
    • /
    • pp.201-209
    • /
    • 2013
  • Ginsenoside, one of the active ingredients of Panax ginseng, has a variety of physiologic and pharmacologic effects. The purpose of this study was to explore the effects of ginsenoside Rd (G-Rd) on melastatin type transient receptor potential 7 (TRPM7) channels with respect to the proliferation and survival of AGS and MCF-7 cells (a gastric and a breast cancer cell line, respectively). AGS and MCF-7 cells were treated with different concentrations of G-Rd, and caspase-3 activities, mitochondrial depolarizations, and sub-G1 fractions were analyzed to determine if cell death occurred by apoptosis. In addition, human embryonic kidney (HEK) 293 cells overexpressing TRPM7 channels were used to confirm the role of TRPM7 channels. G-Rd inhibited the proliferation and survival of AGS and MCF-7 cells and enhanced caspase-3 activity, mitochondrial depolarization, and sub-G1 populations. In addition, G-Rd inhibited TRPM7-like currents in AGS and MCF-7 cells and in TRPM7 channel overexpressing HEK 293 cells, as determined by whole cell voltage-clamp recordings. Furthermore, TRPM7 overexpression in HEK 293 cells promoted G-Rd induced cell death. These findings suggest that G-Rd inhibits the proliferation and survival of gastric and breast cancer cells by inhibiting TRPM7 channel activity.

Estrogen Modulation of Human Breast Cancer Cell Growth

  • Lee, Hyung-Ok;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • 제20권6호
    • /
    • pp.566-571
    • /
    • 1997
  • To gain further insight into how estrogens modulate cell function, the effects of estrogen on cell proliferation were studied inhuman breast cancer cells. We examined the effects of estrogen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Ten nM estradiol markedly stimulated the proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor $1.15{\pm}0.03 pmole/mg protein)$(over that of control. In T47D cells that contained low levels of estrogen receptor $0.23{\pm}0.05 pmole/mg protein)$, Ten nM estrogen slightly stimulated the proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by estrogen. These results showed their sensitivity to growth stimulation by estrogen correlated well with their estrogen receptor content. Also we examined the effect of estrogen on cellular progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. Ten nM estradiol showed maximal stimulation of progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. It is not clear whether these stimulations of progesterone receptor and plasminogen activator activity by estrogen are related to the estrogen stimulation of cell proliferation of MCF-7 cells. Studies with estrogen in human breast cancer cells in culture indicate that sensitivity to growth stimulation by estrogen correlates well with estrogen receptor contents.

  • PDF

P18 Nitric Oxide and Hypoxia Affect TCDD Induced EROD Activity

  • Kim, Yeo W.;Cha Y. Baek;Hong K. Min;Yhun. Y. Sheen
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.138-138
    • /
    • 1998
  • Effects of nitric oxide and hypoxia on ethoxyresorufin deethylase in Hepa I cells and MCF-7 human breast cancer cells were examined. TCDD treatment have resulted in the stimulation of ethoxyresorufin deethylase activity based on fluorometry in Hepa I in dose and time dependent manner. 0.1 nM TCDD showed maximal stimulation of ethoxyresorufin deethylase activity and 24 hour treatment also showed maximal stimulation of ethoxyresorufin deethylase activity. In MCF-7 human breast cancer cells, untreated cells showed high basal level of ethoxyresorufin deethylase activity. TCDD treatment to MCF-7 cells resulted minor stimulation of ethoxyresorufin deethylase activity compared to that in Hepa I cells. Nitric oxide and hypoxia inhibit TCDD effects on ethoxyresorufin deethylase activity in both cell lines. And also flavonoids, such as quercetin showed an inhibition of ethoxyresorufin deethylase activity that is stimulated with TCDD or 3-Methylcholanthrene. Estrogen and estrogen metabolite such as 16 a-estriol and 2-hydroxyestradiol also affects the ethoxyresorufin deethylase activity in MCF-7 cells.

  • PDF

Brazilin Inhibits of TPA-induced MMP-9 Expression Via the Suppression of NF-${\kappa}B$ Activation in MCF-7 Human Breast Carcinoma Cells

  • Kim, Byeong-Soo
    • 한국식품위생안전성학회지
    • /
    • 제25권3호
    • /
    • pp.209-214
    • /
    • 2010
  • Metastasis is the primary cause of from breast cancer mortality. Cell migration and invasion play important roles in neoplastic metastasis. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. NF-${\kappa}B$ is transcription factor important in the regulation of MMP-9, as the promoter of MMP-9 gene contains binding sites for NF-${\kappa}B$. Brazilin, an active component of sappan wood (Caesalpinia sappan), decreases TPA-induced MMP-9 expression and invasion in MCF-7 cells. Also, brazilin suppressed NF-${\kappa}B$ activation in TPA-treated MCF-7 cells. Taken together, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by brazilin is mediated by the suppression of the NF-${\kappa}B$ pathway in MCF-7 cells. This result suggest brazilin provide a potential therapeutic app roach for the treatment of breast cancer.

Effects of Rapamycin on Cell Apoptosis in MCF-7 Human Breast Cancer Cells

  • Tengku Din, Tengku Ahmad Damitri Al-Astani;Seeni, Azman;Khairi, Wirdatul-Nur Mohd;Shamsuddin, Shaharum;Jaafar, Hasnan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10659-10663
    • /
    • 2015
  • Background: Rapamycin is an effective anti-angiogenic drug. However, the mode of its action remains unclear. Therefore, in this study, we aimed to elucidate the antitumor mechanism of rapamycin, hypothetically via apoptotic promotion, using MCF-7 breast cancer cells. Materials and Methods: MCF-7 cells were plated at a density of $1{\times}10^5$ cells/well in 6-well plates. After 24h, cells were treated with a series of concentrations of rapamycin while only adding DMEM medium with PEG for the control regiment and grown at $37^{\circ}C$, 5% $CO_2$ and 95% air for 72h. Trypan blue was used to determine the cell viability and proliferation. Untreated and rapamycin-treated MCF-7 cells were also examined for morphological changes with an inverted-phase contrast microscope. Alteration in cell morphology was ascertained, along with a stage in the cell cycle and proliferation. In addition, cytotoxicity testing was performed using normal mouse breast mammary pads. Results: Our results clearly showed that rapamycin exhibited inhibitory activity on MCF-7 cell lines. The $IC_{50}$ value of rapamycin on the MCF-7 cells was determined as $0.4{\mu}g/ml$ (p<0.05). Direct observation by inverted microscopy demonstrated that the MCF-7 cells treated with rapamycin showed characteristic features of apoptosis including cell shrinkage, vascularization and autophagy. Cells underwent early apoptosis up to 24% after 72h. Analysis of the cell cycle showed an increase in the G0G1 phase cell population and a corresponding decrease in the S and G2M phase populations, from 81.5% to 91.3% and 17.3% to 7.9%, respectively. Conclusions: This study demonstrated that rapamycin may potentially act as an anti-cancer agent via the inhibition of growth with some morphological changes of the MCF-7 cancer cells, arrest cell cycle progression at G0/G1 phase and induction of apoptosis in late stage of apoptosis. Further studies are needed to further characterize the mode of action of rapamycin as an anti-cancer agent.

인체 유방암 세포에서 retinoids의 영향에 대한 연구 (Effect of Retinoids on Human Breast Cancer Cells)

  • 윤현정;신윤용;공구
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권2호
    • /
    • pp.51-66
    • /
    • 2004
  • Retinoids, better known as vitamin A, have been reported to inhibit the growth of several breast cancer cell lines in culture and to reduce breast tumor growth in animal models. Furthermore, retinoids can augment the action of other breast cancer cell growth inhibitors both in vitro and in vivo. Clinically, interest has increased in the potential use of retinoids for the prevention and treatment of human breast cancer. We have examine the effect of all-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) on human breast cancer cell(MCF-10A, T47-D, MCF-7) proliferation using MTT assay and cell cycle analysis(FACS). Overexpression of cyclin D1 protein is observed in the majority of breast cancers, suggesting that dysregulated expression of cyclin D1 might be a critical event in breast cancer carcinogenesis. We investigated whether tRA and 9-cis RA might affect expression of cyclin D1 on human breast cancer cells(MCF-10A, T47-D, MCF-7) using RT-PCR and west-ern bolt. In MCF-10A cells, either tRA or 9-cis RA treatment did not affect the cell proliferation. In T47-D cells and MCF-7 cells, either tRA or 9-cis RA treatment showed the inhibition of the cell proliferation over control cells and also inhibit the estrogen stimulated cell proliferation when it was given together with estrogen. The effect of retinoids was dose- and time- dependent. T47-D cells treated with 1.0 $\muM$ tRA undergo G0/G1-phase arrest by Day 5. MCF-7 cells treated with 1.0 $\muM$ tRA undergo S-phase arrest by Day 5. All-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) inhibited the cyelin D1 mRNA and protein expression levels of human MCF-7 and T47-D breast carcinoma cells in vitro. The data indicate that retinoids can reduce cyclin D1 expression levels in a variety of breast cell lines in vitro and result in inhibition of cell proliferation. tRA-mediated growth inhibition and cyclin D1 expression inhibition is more potent than 9-cis RA mediated that. tRA-mediated inhibition effect is more potent on T47-D cells than on MCF-7 cells. Our data suggest that retinoids activity is different according to property of cell lines. Future chemoprevention of breast cancer studies using retinoids will be necessary to determine the mechanism of the retinoids-mediated growth inhibition.

  • PDF

Bisphenol A, Nonylphenol, Pentachlorophenol이 MCF-7 및 PC-3 세포 증식에 미치는 영향 (Effect of Bisphenol A, Nonylphenol, Pentachlorophenol on the Proliferation of MCF-1 and PC-3 Cells)

  • 이수민;최형기;유경희
    • KSBB Journal
    • /
    • 제18권5호
    • /
    • pp.424-428
    • /
    • 2003
  • 내분비계장애물질인 bisphenol A, nonylphenol, pentachlorophenol을 대상으로 여성 유방암세포 유래 MCF-7 세포주와 남성 전립선암세포 유래 PC-3 세포주에서 세포 증식효과를 MTT 방법으로 조사하였다. MCF-7 세포주에 이들 세 종류의 내분비계장애물질을 농도별로 처리하여 세포증식에 미치는 영향을 조사한 결과 모두 세포증식을 촉진하는 결과를 보였다. $10^{-7}$ M에서 $10^{-6}$ M 농도 범위에서 MCF-7 세포의 최대증식효과를 유도하였다. 그러나 PC-3 세포주의 경우에는 세포증식에 bisphenol A, nonylphenol, pentachlorophenol 모두 영향을 미치지 못하였다. 이러한 결과는 이들 세 종류의 내분비계 장애물질이 남성 전립선세포 유래인 PC-3 세포주의 증식에는 관여하지 않고 여성 유방암 세포에서 유래하고 에스트로젠 반응성인 MCF-7 세포주에만 증식효과를 갖는 사실을 보여주고 있으며 이는 bisphenol A, nonylphenol, pentachlorophenol이 여성호르몬인 에스트로젠과 유사한 역할을 한다는 사실을 보여주는 것이라 할 수 있다.