• 제목/요약/키워드: MCEM

검색결과 3건 처리시간 0.014초

Monte-Carlo expectation-maximaization 방법을 이용한 무응답 모형 추정방법 (An estimation method for non-response model using Monte-Carlo expectation-maximization algorithm)

  • 최보승;유현상;윤용화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.587-598
    • /
    • 2016
  • 각종 선거를 앞두고 여러 여론조사 기관들은 다양한 방법으로 선거 결과를 예측한다. 조사를 통한 선거 예측을 수행하는 데 있어서 발생할 수 있는 문제점 중 하나는 무응답이며 무응답 대체 방법에 따라 예측 결과는 완전히 다른 결과를 생산해 낼 수 있다. 본 연구에서는 무응답 대체의 방법으로 모형을 기반으로 한 대체 방법에 대하여 연구하였다. 특히, 최대 우도 추정 방법을 적용했을 때 무시할 수 없는 무응답 (non-ignorable non-response) 체계 하에서 발생할 수 있는 변방 값 문제를 해결하기 위해 Wei와 Tanner (1990)가 제안한 Monte Carlo EM 알고리즘을 적용하였다. 모의 실험을 통하여 MCEM 방법과 기존의 최대 우도 추정 방법, 베이지안 추정 방법 사이의 비교 연구를 진행하였고 그 결과 MCEM 방법이 기존 방법들에 대한 대안 방법으로 이용될 수 있음을 보였다. 또한 2012년에 시행된 제18대 대통령 선거 당일의 출구조사 자료를 적용하여 실증 분석을 수행하였다. 예측 결과를 비교하기 위해 Bautista 등 (2007)이 제안한 MWPE (modified within precinct error)를 이용하였다.

Semiparametric Regression Splines in Matched Case-Control Studies

  • Kim, In-Young;Carroll, Raymond J.;Cohen, Noah
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.167-170
    • /
    • 2003
  • We develop semiparametric methods for matched case-control studies using regression splines. Three methods are developed: an approximate crossvalidation scheme to estimate the smoothing parameter inherent in regression splines, as well as Monte Carlo Expectation Maximization (MCEM) and Bayesian methods to fit the regression spline model. We compare the approximate cross-validation approach, MCEM and Bayesian approaches using simulation, showing that they appear approximately equally efficient, with the approximate cross-validation method being computationally the most convenient. An example from equine epidemiology that motivated the work is used to demonstrate our approaches.

  • PDF

불완전 자료에 대한 Metropolis-Hastings Expectation Maximization 알고리즘 연구 (Metropolis-Hastings Expectation Maximization Algorithm for Incomplete Data)

  • 전수영;이희찬
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.183-196
    • /
    • 2012
  • 결측자료(missing data), 절단분포(truncated distribution), 중도절단자료(censored data) 등 불완전한 자료(incomplete data)하의 추론문제(incomplete problems)는 통계학에서 자주 발생되는 현상이다. 이런 문제의 해결방법으로 Expectation Maximization, Monte Carlo Expectation Maximization, Stochastic Expectation Maximization 알고리즘 등을 이용하는 방법이 있지만, 정형화된 분포의 가정이 필요하다는 단점을 가지고 있다. 본 연구에서는 정형화된 분포의 가정이 없는 경우에 사용할 수 있는 Metropolis-Hastings Expectation Maximization(MHEM) 알고리즘을 제안하고자 한다. MHEM 알고리즘의 효율성은 중도절단자료(censored data)를 이용한 모의실험과 KOSPI 200 수익률의 실증자료분석를 통해 알수 있었다.