• 제목/요약/키워드: MCAO model

검색결과 53건 처리시간 0.038초

한의학적 중풍 동물 모델 설정을 위한 실험적 연구 (The Experimental Study on the Animal Stroke Model of Oriental Medicine)

  • 채한;이현삼;홍무창
    • 대한한의학회지
    • /
    • 제20권4호
    • /
    • pp.82-92
    • /
    • 2000
  • The purpose of the present study was to explore the proper method for animal stroke model of Oriental medicine To this end, brain ischemia was induced by distal middle cerebral artery occlusion(dMCAO) and proximal middle cerebral artery occlusion(pMCAO) and evaluated with the method of Triphenyl Tetrazolium Chloride (TTC) staining and Swimming Behavior Test. Results demonstrated that first, infarct size and volume of pMCAO group were significantly bigger that those of dMCAO group. Second, analysis of swimming behavior test revealed that the percentage of left turning angles of pMCAO was significantly bigger than that of dMCAO. Third, during swimming behavior test, there were peculiar traces of small successive circles that represent motor dysfunction and conscious disturbance among dMCAO group. The results of the study thus indicate that non-invasive intraluminal method of pMCAO was the appropriate animal stroke model for Oriental medicine in the light of brain ischemia as hemiplesia and conscious disturbance.

  • PDF

허혈성 대뇌손상시 curcumin 투여에 의한 peroxiredoxin-5 발현의 변화 (Change of Peroxiredoxin-5 Expression by Curcumin Treatment in Cerebral Ischemia)

  • 김상아;고필옥
    • 농업생명과학연구
    • /
    • 제50권3호
    • /
    • pp.129-139
    • /
    • 2016
  • Curcumin은 항산화제로서 신경세포의 보호작용에 관여하며, peroxiredoxin-5는 활성산소의 형성을 저해하여 산화적 스트레스로부터 신경세포를 보호한다고 알려져 있다. 본 연구는 허혈성 대뇌손상모델에서 curcumin에 의해 조절되는 peroxiredoxin-5 발현의 변화에 관하여 조사하였다. 실험동물은 흰쥐(Sprague-Dawley, 수컷)를 사용했으며, 허혈성 대뇌손상을 유도하기 위하여 중간대뇌동맥폐쇄술(MCAO)을 실시하였다. MCAO를 시행한 1시간 후에 curcumin(50mg/kg B.W.) 또는 vehicle을 복강으로 주사하였고, MCAO을 실시한 24시간 후 대뇌피질의 조직을 적출하였다. Hematoxylin과 eosin 조직염색 결과 MCAO를 시행한 대뇌피질에서는 신경세포의 괴사 소견을 보였지만, curcumin 투여군에서 이들 신경세포의 손상이 완화되어 있어 MCAO로 유도된 대뇌 손상시 curcumin의 보호효과를 확인하였다. 또한 MCAO를 실시한 vehicle+MCAO 실험군에서 peroxiredoxin-5 단백질의 발현은 감소하였으나, curcumin을 처리한 curcumin+MCAO 실험군에서는 vehicle+MCAO 실험군의 감소에 비해 감소의 폭이 현저히 줄어들어 MCAO를 시행하지 않은 sham군의 발현 수준으로 유지되었다. Reverse-transcription PCR과 Western blot 분석을 통해 중간대뇌동맥폐쇄술로 유도된 허혈성 대뇌손상 모델에서 peroxiredoxin-5 발현의 감소와 curcumin의 투여에 의한 peroxiredoxin-5 발현 감소의 완화를 확인하였다. 본 연구의 결과는 curcumin의 처리는 MCAO로 인한 peroxiredoxin-5 발현의 감소를 억제시킨다는 것을 보여주었다. 따라서, 대뇌손상 모델동물에서 curcumin은 MCAO로 유도된 peroxiredoxin-5 발현의 감소 정도를 완화시킴으로서 curcumin이 신경세포 보호작용에 기여하는 것으로 사료된다.

Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia

  • Qian, Yong Ri;Lee, Mu-Jin;Hwang, Shi-Nae;Kook, Ji-Hyun;Kim, Jong-Keun;Bae, Choon-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.435-440
    • /
    • 2010
  • Valproic acid (VPA) is a well-known anti-epileptic and mood stabilizing drug. A growing number of reports demonstrate that VPA is neuroprotective against various insults. Despite intensive efforts to develop new therapeutics for stroke over the past two decades, all treatments have thus far failed to show clinical effect because of treatment-limiting side effects of the drugs. Therefore, a safety-validated drug like VPA would be an attractive candidate if it has neuroprotective effects against ischemic insults. The present study was undertaken to examine whether pre- and post-insult treatments with VPA protect against brain infarct and neurological deficits in mouse transient (tMCAO) and permanent middle cerebral artery occlusion (pMCAO) models. In the tMCAO (2 hr MCAO and 22 hr reperfusion) model, intraperitoneal injection of VPA (300 mg/kg, Lp.) 30 min prior to MCAO significantly reduced the infarct size and the neurological deficit. VPA treatment immediately after reperfusion significantly reduced the infarct size. The administration of VPA at 4 hr after reperfusion failed to reduce the infarct size and the neurological deficit. In the pM CAO model, treatment with VPA (300 mg/kg, i.p.) 30 min prior to MCAO significantly attenuated the infarct size, but did not affect the neurological deficit. Western blot analysis of acetylated H3 and H4 protein levels in extracts from the ischemic cortical area showed that treatment with VPA increased the expression of acetylated H3 and H4 at 2 hrs after MCAO. These results demonstrated that treatment with VPA prior to ischemia attenuated ischemic brain damage in both mice tMCAO and pMCAO models and treatment with VPA immediately after reperfusion reduced the infarct area in the tMCAO model. VPA could therefore be evaluated for clinical use in stroke patients.

Neuroprotective Effects of KC0244, a Glycine Site Antagonist, in a Rat Model of Transient Focal Ischemia

  • Ku, Hee-Jung;Churlmin Seong;Park, No-Sang;Changbae Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.143-143
    • /
    • 1998
  • Antagonists acting at the glycine site of the NMDA receptor have been gaining safer alternatives for stroke therapy because they have few adverse effect competitive and noncompetitive NMDA antagonists. Therefore, the neuroprotect novel glycine site antagonist KC0244 were evaluated in a rat model of transient comparison with GV150526A in a developmental phase. Middle cerebral artery oc was produced by insertion of a silicone-coated 4-0 nylon monofilament to the o in male Sprague-Dawley rats under isoflurane anesthesia. After 90 or 120 min retracted and the ischemic tissue reperfused. In 90-min MCAO model, GV150526A was administered 30 min before MCAO or immediately after MCAO. In 120-min MC KC0244 or GV150526A (10 mg/kg, i.p.) was administered 1 hr before MCAO or imme MCAO. Infarct volume was measured 24 hr after MCAO using the 2,3,5-triphe chloride staining method. In 90-min MCAO model, treatments with GV1505 significantly reduce infarct volume although they tended to slightly reduce cor approximately 19% compared with the nontreated group. In 120-min MCAO model with GV150526A did not either significantly reduce infarct volume although the reduce total infarct volume by approximately 16% compared with the vehicle-tre However, 1-hr preischemic and immediate treatments with KC0244 reduced total i 39 and 30% (corrected total infarct volume by 44 and 32%), respectively, co vehicle-treated control group. The results suggest that KC0244 can provid against transient focal ischemic damage with greater in vivo potency than GV150

  • PDF

성심산(醒心散)의 중대뇌동맥 폐쇄로 유발된 허혈성 뇌손상 백서(白鼠)에 대한 인지 및 운동기능 회복 촉진효과 (Sungshim-san-mediated Recovery of Cognition and Motor Function in the Severe Rat Stroke, Permanent Middle Cerebral Artery Occlusion Model)

  • 이경석;정대규
    • 동의신경정신과학회지
    • /
    • 제26권3호
    • /
    • pp.319-336
    • /
    • 2015
  • Objectives: The object of this study was to evaluate the cognition and motor function recovery effects of Sungshim-san (SSS), a traditional Korean cardio-protective polyherbal formula in the severe rat stroke, permanent middle cerebral artery occlusion (pMCAO) model. Methods: The experimental animals were divided into 6 groups. SSS aqueous extracts (yield=16.82%; 400, 200 and 100 mg/kg) were administered orally by using Sonde, once daily, for 28 continuous days from 24 hrs post-pMCAO. Donepezil 10 mg/kg, a representative drug for dementia, was used as a reference drug. The body weight changes, infarct/defect sizes, sensorimotor function and cognitive motor behavior were serially monitored. Limb placing and body-swing test for sensorimotor functions were conducted at 1 day before operation (base line), and 1, 3, 7, 14, 21 and 28 days post-pMCAO; and water maze test for the cognitive motor behavior was conducted at 14 and 28 days post-pMCAO, respectively. Results: Focal cerebral cortex infarct and defects due to pMCAO resulted in marked decreases of body weight, disorders of sensorimotor functions and cognitive motor behaviors. However, the pMCAO-related ischemic damages were markedly and dose-dependently inhibited by treatment with SSS 400 and 200 mg/kg, respectively. Donepezil markedly decreased the body weight and gains, as compared with pMCAO control rats; however, SSS 400 and 200 mg/kg favorably ameliorated the pMCAO-induced decreases in body weight and gains. SSS 100 mg/kg treated rats did not show any favorable effects on the pMCAO-related ischemic damages, as compared with pMCAO control rats. Conclusions: The results of the study indicated that oral administration of SSS 400 and 200 mg/kg accelerated cognition and motor function recovery in the rat pMCAO model. The treatment effect was potentially mediated by neuroprotection via the known augmentation of cerebral antioxidant defense system of SSS itself or its individual herbal components. Especially, the overall effects of SSS 200 mg/kg were similar to those of donepezil 10 mg/kg, but less toxic.

Chlorogenic acid alleviates the reduction of Akt and Bad phosphorylation and of phospho-Bad and 14-3-3 binding in an animal model of stroke

  • Murad-Ali, Shah;Ju-Bin, Kang;Myeong-Ok, Kim;Phil-Ok, Koh
    • Journal of Veterinary Science
    • /
    • 제23권6호
    • /
    • pp.84.1-84.15
    • /
    • 2022
  • Background: Stroke is caused by disruption of blood supply and results in permanent disabilities as well as death. Chlorogenic acid is a phenolic compound found in various fruits and coffee and exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. Objectives: The purpose of this study was to investigate whether chlorogenic acid regulates the PI3K-Akt-Bad signaling pathway in middle cerebral artery occlusion (MCAO)-induced damage. Methods: Chlorogenic acid (30 mg/kg) or vehicle was administered peritoneally to adult male rats 2 h after MCAO surgery, and animals were sacrificed 24 h after MCAO surgery. Neurobehavioral tests were performed, and brain tissues were isolated. The cerebral cortex was collected for Western blot and immunoprecipitation analyses. Results: MCAO damage caused severe neurobehavioral disorders and chlorogenic acid improved the neurological disorders. Chlorogenic acid alleviated the MCAO-induced histopathological changes and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Furthermore, MCAO-induced damage reduced the expression of phospho-PDK1, phospho-Akt, and phospho-Bad, which was alleviated with administration of chlorogenic acid. The interaction between phospho-Bad and 14-3-3 levels was reduced in MCAO animals, which was attenuated by chlorogenic acid treatment. In addition, chlorogenic acid alleviated the increase of cytochrome c and caspase-3 expression caused by MCAO damage. Conclusions: The results of the present study showed that chlorogenic acid activates phospho-Akt and phospho-Bad and promotes the interaction between phospho-Bad and 14-3-3 during MCAO damage. In conclusion, chlorogenic acid exerts neuroprotective effects by activating the Akt-Bad signaling pathway and maintaining the interaction between phospho-Bad and 14-3-3 in ischemic stroke model.

The Effects of tDCS and Montoya Stair Task on Sensorimotor Recovery and GFAP Expression in MCAo induced Stroke Rat Model

  • Sim, Ki-Cheol;Kim, Gi-Do;Kim, Kyung-Yoon;An, Ho-Jung;Lee, Joon-Hee;Min, Kyoung-Ok;Kim, Gye-Yeop
    • 국제물리치료학회지
    • /
    • 제2권1호
    • /
    • pp.193-200
    • /
    • 2011
  • This study is intended to examine the tDCS and Montoya stair task(MST) on sensorimotor recovery and glial scar expression in MCAo induced stroke model of rat. To achieve this goal, this study selected 80 SD rats of 8 weeks. The experiment groups were divided them into four groups, and assigned 20 rats to each group. Group I was a experimental control group; GroupII was a tDCS application group after MCAo; Group III was a MST application group after MCAo; Group IV was a tDCS and MST application group after MCAo. In each group, neurological function test measurement, motor behavior test, montoya stair task test, immunohistochemistric finding of GFAP expression finding were analyzed. In motor behavior test, the outcome of group I was significantly difference than the other group, especially from 14days. In montoya stair task test, the outcome of group I was significantly lower than the other group especially, group II were significantly different on 14days and group IV was most significantly difference than the other group. In immunohistochemistric finding, group II, III, IV were decrease GFAP expression on depend on time stream. These results throughout the MCAo due to focal ischemic brain injury rat model four weeks tDCS and MST was applied, when the neurobehavioural, upper extremity function and ability, histopathologic data suggest that sensorimotor function recovery and a positive influence on glial scar decrease and confirmed that.

MCAo 허혈동물모델에서 육미지황탕 효능에 관한 프로테오믹스 연구 (Proteomic Analysis of MCAo Ischemia Model Administered with Yukmijihwangtang)

  • 김영옥;조동욱;강봉주
    • 한국한의학연구원논문집
    • /
    • 제13권1호통권19호
    • /
    • pp.153-160
    • /
    • 2007
  • In the post-genome era, analysis of the cellular transcriptome using microarray or the cellular proteome using a 2-D gel electrophoresis and MALDI-TOF mass spectrometry are most widely used. Stroke is one of the most important causes of death along with cancer and cardiac disease. When pathological change of cells in developed from cerebral ischemia accompanied by stroke administration of neuroprotective drugs before stroke can decreases the degeneration of neuronal cells. The purpose of the present study was to assess the neuroprotective effect and protein expression after administration of P004, middle cerebral artery model of cerebral ischemia in rats. SD rats were subjected to middle cerebral artery occlusion. P004 (1,000 mg/kg) was administered 2 times at 0, 90 minutes after middle cerebral artery occlusion (MCAo). Rats were killed at 48 hours, and infarct area and volume were determined by histology and computerized image analysis. We investigated the protein expression profile on the global ischemia induced by MCAo. This proteomic analysis enable us to identify several proteins differently expressed in infarct brain tissue. The aims of this study were to do investigation comparing the neuroprotection activities of P004 and to understand the mechanism of acted as neuroprotective drug.

  • PDF

The effect of physical training on glutamate transporter expression in an experimental ischemic stroke rat model

  • Kim, Gye-Yeop;Kim, Eun-Jung
    • Physical Therapy Rehabilitation Science
    • /
    • 제2권2호
    • /
    • pp.87-91
    • /
    • 2013
  • Objective: The present study was aimed at determining the effect of physical training on glutamate transporter activity in a middle cerebral artery occlusion (MCAO)-induced ischemia injury rat model. Design: Randomized controlled trial. Methods: In this study, we randomly divided them into three groups. Group I included non-occlusion sham controls (n=10), Group II included non-physical training after MCAO (n=10), and Group III included rats that were subjected to physical training after MCAO (n=10). Rats in the physical training group underwent treadmill training, which began at 24 h after MCAO and continued for 14 consecutive days. The training intensity was gradually increased from 5 m/min on the first day to 12 m/min on day 3, and it was maintained until day 14. Focal cerebral ischemia was examined in adult male Sprague-Dawley rats by using the MCAO model. We determined the functional outcomes for each rat on days 1, 7, and 14. Glutamate transporter-1 (GLT-1) activity in the cortex of rats from all three groups was examined at the end of the experiment. Results: Out result show that MCAO rats exhibited severe neurological deficits on the 1 day, and there was no statistically significant in each groups. We observed that the functional outcomes were improved at days 7 and 14 after middle cerebral artery occlusion, and GLT-1 activity was increased in the physical training group (p<0.05). Conclusions: These results indicated that physical training after focal cerebral ischemia exerts neuroprotective effects against ischemic brain injury by improving motor performance and increasing the levels of GLT-1 activity.

The Effects of Glutamate NMDA Receptor Antagonist MK-801 on Gastrointestinal Motility after Middle Cerebral Artery Occlusion in Rats

  • Ameer, Nasir Hussin;Lee, Jae-Hee;Choi, Myoung-Ae;Jin, Guang-Shi;Kim, Min-Sun;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권3호
    • /
    • pp.151-156
    • /
    • 2010
  • This study was performed to investigate the role of glutamate neurotransmitter system on gastrointestinal motility in a middle cerebral artery occlusion (MCAO) model of rats. The right middle cerebral artery was occluded by surgical operation, and intestinal transit and geometric center as a parameter of gastrointestinal motility and expression of c-Fos protein in the insular cortex and cingulate cortex were measured at 2 and 12 h after MCAO. Intestinal transit was $66.3{\pm}7.5%$ and $62.3{\pm}5.7%$ 2 and 12 h after sham operation, respectively, and MCAO significantly decreased intestinal transit to $39.0{\pm}3.5%$ and $47.0{\pm}5.1%$ at 2 and 12 h after the occlusion, respectively (p<0.01). The geometric center was $5.6{\pm}0.4$ and $5.2{\pm}0.9$ at 2 and 12 h after sham operation, respectively, and MCAO significantly decreased geometric center to $2.9{\pm}0.8$ and $3.0{\pm}0.3$ at 2 and 12 h after the occlusion, respectively (p<0.01). In control animals, injection of atropine decreased intestinal transit to $35.9{\pm}5.2%$, and injection of glutamate NMDA receptor antagonist, MK-801, decreased intestinal transit to $28.8{\pm}9.5%$. Pretreatment with MK-801, a glutamate NMDA receptor antagonist, in the MCAO group decreased intestinal transit to $11.8{\pm}3.2%$, which was significantly decreased compared to MCAO group (p<0.01). MCAO markedly increased the expression of c-Fos protein in the insular cortex and cingulate cortex ipsilateral to the occlusion 2 h after MCAO, and pretreatment with MK-801 produced marked reduction of c-Fos protein expression compared to MCAO group (p<0.01). These results suggest that modulation of gastrointestinal motility after MCAO might be partially mediated through a glutamate NMDA receptor system.