• Title/Summary/Keyword: MBR sludge

Search Result 90, Processing Time 0.022 seconds

Combined Effects of Curcumin and (-)-Epigallocatechin Gallate on Inhibition of N-Acylhomoserine Lactone-Mediated Biofilm Formation in Wastewater Bacteria from Membrane Bioreactor

  • Lade, Harshad;Paul, Diby;Kweon, Ji Hyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1908-1919
    • /
    • 2015
  • This work investigated the potential of curcumin (CCM) and (-)-epigallocatechin gallate (EGCG) to inhibit N-acyl homoserine lactone (AHL)-mediated biofilm formation in gram-negative bacteria from membrane bioreactor (MBR) activated sludge. The minimum inhibitory concentrations (MICs) of CCM alone against all the tested bacteria were 200-350 μg/ml, whereas those for EGCG were 300-600 μg/ml. Biofilm formation at one-half MICs indicated that CCM and EGCG alone respectively inhibited 52-68% and 59-78% of biofilm formation among all the tested bacteria. However, their combination resulted in 95-99% of biofilm reduction. Quorum sensing inhibition (QSI) assay with known biosensor strains demonstrated that CCM inhibited the expression of C4 and C6 homoserine lactones (HSLs)-mediated phenotypes, whereas EGCG inhibited C4, C6, and C10 HSLs-based phenotypes. The Center for Disease Control biofilm reactor containing a multispecies culture of nine bacteria with one-half MIC of CCM (150 μg/ml) and EGCG (275 μg/ml) showed 17 and 14 μg/cm2 of extracellular polymeric substances (EPS) on polyvinylidene fluoride membrane surface, whereas their combination (100 μg/ml of each) exhibited much lower EPS content (3 μg/cm2). Confocal laser scanning microscopy observations also illustrated that the combination of compounds tremendously reduced the biofilm thickness. The combined effect of CCM with EGCG clearly reveals for the first time the enhanced inhibition of AHL-mediated biofilm formation in bacteria from activated sludge. Thus, such combined natural QSI approach could be used for the inhibition of membrane biofouling in MBRs treating wastewaters.

Evaluation of CIA(Conventional Intermittent Aeration) and MIA(Modified Intermittent Aeration) in Membrane Submerged Advanced Wastewater Treatment Process (멤브레인을 침지한 하수고도처리공법에서 기존간헐포기와 개량간헐포기의 효율성 비교평가)

  • Seo, In-Seok;Kim, Yeon-Kwon;Kim, Ji-Yeon;Kim, Hong-Suck;Kim, Byung-Goon;Choi, Chang-Gyu;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2006
  • In this study, the treatment of domestic wastewater in a field-scale membrane submerged intermittently aerated activated sludge process($210m^3/day$) was investigated under difference aeration methods. Operating temperature was 5.4 to 25.0 and membrane used in this study is a polyethylene hollow fiber membrane(pore size $0.4{\mu}m$). The range of operating flux was $9.7{\sim}24.4l/m^2-h$ and membrane permeates periodically operated for 7min followed idle for 3 min. The results showed that MIA(modified intermittent aeration) was more efficient in nitrogen and phosphorus removal. The removal efficiencies of T-N and T-P were 73.0% and 69.6% for CIA(conventional intermittent aeration) and 57.5%, 58.6% for MIA (modified intermittent aeration). With application of modified intermittent aeration, DO reached nearly Omg/l within 10 minutes after air off. Organics of influent could be entirely consumed to the denitrification and the P-release without the influence by remained DO in intermittent aeration reactor. Therefore, newly developed KSMBR(Kowaco-KMS-Ssangyoung Membrane Bio-Reactor) process with modified intermittent aeration can be one of the useful process for stable nitrogen and phosphorus removal.

Suction Pressures with respect to the Operational Modes using the Multi-bore Capillary Membranes in the Membrane Bioreactor (생물막 반응기내 다공성 중공사형막을 이용한 운전방식에 따른 흡입 압력)

  • Kim, Min Hyeong;Koo, Eeung Mo;Lee, Min Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.343-350
    • /
    • 2021
  • In this study the suction pressure was measured with respect to operational time by submersing the multi-bore capillary membrane module in membrane bioreactor(MBR). The hexagonal shape capillary module which has the nominal pore size of 0.2 ㎛, outer diameter of 6.4 or 4.2 mm was immersed in MLSS 8,000 mg/L active sludge aqueous solution, and confirmed changes with respect to permeation flux and air flow rate. It was operated by the filtration/relaxation(FR), FR with backwashing(FR/BW), and sinusoidal flux continuous operation(SFCO) modes. The suction pressure for the SFCO and FR modes was lower at 30 and 50 L/m2·hr, respectively. In addition, the suction pressure of the module with a small outer diameter was relatively low. The suction pressure of a large outer diameter was greatly increased, but it could be reduced by more than 40% by backwashing.

Preparation of PVdF/GO Composite Nanofibrous Flat Membrane and its Permeation Characteristics in Activated Sludge (PVdF/GO 복합 나노섬유 평막의 제조 및 활성슬러지 내 투과특성)

  • Won, In Hye;Jang, Wongi;Chung, Kun Yong;Byun, Hongsik
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In this study the nanofiber was prepared by electrospinning method with polyvinylidene fluoride (PVdF) and a completely dispersed solution of graphene oxide (GO) in the mixed solvent of dimethylformamide (DMF) and acetone. The $0.4{\mu}m$ pore size microfiltration flat membrane was made by increasing layers of the PVdF/GO composite nanofiber. Also, transmembrane pressure (TMP) was measured in order to evaluate fouling of the PVdF/GO composite membrane which was introduced GO reducing biological fouling with the intrinsic antibacterial characteristics. The permeate experiments were carried out simultaneously for the PVdF/GO and commercialized CPVC (chlorinated polyvinyl chloride) flat membranes with $0.01m^2$ effective area in the activated sludge solution of MLSS 4,500 mg/L. TMP of PVdF/GO membrane decreased up to 79% lower than that of CPVC for $10L/m^2{\cdot}h$ permeate flux without air supply. Also, for the case of run/stop operational mode, TMP of PVdF/GO membrane decreased up to 69% lower than that of CPVC for $10L/m^2{\cdot}h$.

Transmembrane Pressures with Respect to Backwashing and Sinusoidal Flux Continuous Operation Modes for the Submerged Hollow Fiber Membrane in the Activated Sludge Solution (활성슬러지 수용액 내 침지식 중공사막의 역세척 및 사인파형 연속투과 운전방식에 따른 막간차압)

  • Jeong, Doin;Jung, Seung Hee;Lee, Sohl;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.524-529
    • /
    • 2015
  • In this study transmembrane pressure (TMP) was measured with respect to operational time by applying the sinusoidal flux continuous operation (SFCO) for the hollow fiber membrane. The hollow fiber module which has $100cm^2$ of effective area and $0.45{\mu}m$ nominal pore size was submerged in the activated sludge solution of MLSS 5,000 mg/L. The critical permeate flux was measured as $26.6L/m^2{\cdot}hr$ by the method of continuous flux step change. TMPs of the filtration/relaxation (FR), FR with backwashing (FR/BW) and SFCO modes were measured. The SFCO mode was more effective than FR and FR/BW modes below the critical permeate flux such as 15, 20 and $25L/m^2{\cdot}hr$. However, the FR/BW was confirmed as more effectively fouling controlled mode than SFCO mode above the critical permeate flux.

THE EFFECT OF AIR BUBBLES FROM DISSOLVED GASES ON THE MEMBRANE FOULING IN THE HOLLOW FIBER SUBMERGED MEMBRANE BIO-REACTOR (SMBR)

  • Jang, Nam-Jung;Yeo, Young-Hyun;Hwang, Moon-Hyun;Vigneswaran, Saravanamuthu;Cho, Jae-Weon;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.91-98
    • /
    • 2006
  • There is a possibility of the production of the air bubbles in membrane pores due to the reduction in pressure during membrane filtration. The effect of fine air bubbles from dissolved gases on microfiltration was investigated in the submerged membrane bio-reactor (SMBR). The $R_{air}$ (air bubble resistance) was defined as the filtration resistance due to the air bubbles formed from the gasification of dissolved gases. From the results of filtration tests using pure water with changes in the dissolved oxygen concentration, the air bubbles from dissolved gases were confirmed to act as a foulant and; thus, increase the filtration resistance. The standard pore blocking and cake filtration models, SPBM and CFM, respectively, were applied to investigate the mechanism of air bubble fouling on a hollow fiber membrane. However, the application of the SPBM and CFM were limited in explaining the mechanism due to the properties of air bubble. With a simple comparison of the different filtration resistances, the $R_{air}$ portion was below 1% of the total filtration resistance during sludge filtration. Therefore, the air bubbles from dissolved gases would only be a minor foulant in the SMBR. However, under the conditions of a high gasification rate from dissolved gases, the effect of air bubble fouling should be considered in microfiltration.

Development and Field Application of the Advanced Wastewater Treatment process (KSMBR) by Hollow Fiber Submerged Membrane (침지식 중공사막을 결합한 Dynamic state 하수고도처리공정(KSMBR process)의 개발 및 현장적용평가)

  • Kim, Ji-yeon;Seo, In-seok;Kim, Hong-suck;Kim, Youn-kwon;Kim, Byung-goon;Choi, Chang-gyu;Ahn, Hyo-won;Seo, Wan-seok;Jang, Moon-seog
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.358-363
    • /
    • 2006
  • KSMBR process is dynamic state advanced wastewater treatment applied with Trisectional Aeration (TSA) mode combined with membrane. TSA was remodeled conventional intermittent aeration which was operated nonaeration-aeration. TSA operates nonaeration ($N_1$) - aeration (A) - nonaeration ($N_2$) in Trisectional Aeration Reactor (TAR). Organics of influent could be nearly consumed to denitrification without influence by remained DO in TAR and it could be operated about sludge return ratio of 1Q (influent base). The purpose of this study was to apply KSMBR to the full-scale plant and to evaluate efficiency of nitrogen and phosphorus removal and TSA operation. The result of this study, average CODcr/T-N and CODcr/T-P ratio were 7.8 and 59.6, respectively. BOD, TCODcr, SS, T-N, T-P, E-coli removal efficiency were 98.4, 95.2, 73.0, 69.6, 99.95 %, respectively. KSMBR obtained high removal efficiencies of C, N and P when it applied full-scale plant.

Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N

  • Gasmi, Aicha;Heran, Marc;Hannachi, Ahmed;Grasmick, Alain
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.263-276
    • /
    • 2015
  • This paper deals with the influence of chemical oxygen demand to nitrogen ratio ((COD/N) ratio) on the performance of an membrane bioreactor. We aim at establishing relations between COD/N ratio, organisms' distribution and sludge properties (specific resistance to filtration (SRF) and membrane fouling). It is also essential to define new criteria to characterize the autotrophic microorganisms, as the measurements of apparent removal rates of ammonium seem irrelevant to characterize their specific activity. Two experiments (A and B) have been carried on a 30 L lab scale membrane bioreactor with low COD/N ratio (2.3 and 1.5). The obtained results clearly indicate the role of the COD/N ratio on the biomass distribution and performance of the membrane bioreactor. New specific criteria for characterising the autotrophic microorganisms activity, is also defined as the ratio of maximum ammonium rate to the specific oxygen uptake rate in the endogenous state for autotrophic bacteria which seem to be constant whatever the operating conditions are. They are about 24.5 to 23.8 $gN-NH_4{^+}/gO_2$, for run A and B, respectively. Moreover, the filterability of the biological suspension appear significantly lower, specific resistance to filtration and membrane fouling rate are less than $10^{14}m^{-2}$ and $0.07\;10^{12}m^{-1}.d^{-1}$ respectively, than in conventional MBR confirming the adv < antage of the membrane bioreactor functioning under low COD/N ratio.

A Study on Management of Seafood Wastewater Treatment Facility using Submerged MBR (침지식 MBR을 이용한 수산물 폐수처리장 운영에 관한 연구)

  • Choi, Yong-Bum;Lee, Hae-Seung;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7227-7236
    • /
    • 2015
  • The survey revealed that, due to the discharge characteristics of seafood wastewater, irregular inflow loads were caused, making it difficult to treat the wastewater safely. It is crucial for the operation of pressure and floating tanks for the treatment of high-concentration organic wastewater such as seafood wastewater. The survey of operation factors for the pressure and floating tanks revealed this: A/S ratio 0.05 (design criteria 0.01), the pressurized air pressure 8bar(design criteria 6bar), the pressure tank pressure 6bar (design criteria 4.5bar), and HRT 60sec(design criteria: 10sec). Also, the recirculation rate was changed to over 40%(design criteria: 30%), and the surface load rate was changed to under $13.7m^3/m^2{\cdot}hr$(design criteria: under $17.7m^3/m^2{\cdot}hr$); thus, compared to the initial design criteria, the operation factors were changed according to inflow characteristics, thus enhancing the pressure and floating tank performance. The survey of inflow load revealed BOD 140.7%, $COD_{Mn}$ 120.32%, and SS 106.3%, compared to the inflow design criteria, as well as T-N 135.5% and T-P173.3%, higher than the design criteria. The survey of the treatment facility annual operation cost revealed high portions in sludge treatment cost(27.7%) and chemicals costs(26.0%), and the sludge treatment cost will likely further increase due to the ban on ocean dumping. The unit cost for the treatment of seafood wastewater was found to be KRW 3,858 per ton, more than 27 times higher than the sewage treatment cost(KRW 142.6/ton), presumably because the seafood wastewater contains high-concentration organic substances and nutritive salts.

Development of Influent Controlled Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater (하수 고도처리를 위한 유로변경형 MBR공정의 개발)

  • Park, Jong-Bu;Shin, Kyung-Sook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.485-491
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in membrane bioreactor system. Membrane bioreactor consists of four reactors such as two intermittently anaerobic tanks, the oxic tank and the sludge solubilizaion tank with an internal recycle. The hydraulic retention time (HRT) and flux were 6.5 hours and $20.4L/m^2{\cdot}hr$ (LMH), respectively. The removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.0%, 99.3%, 99.9%, 69.9%, and 66.9%, respectively. The estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR), specific phosphorus release rate (SPRR) and specific phosphorus uptake rate (SPUR) were 0.34 kgVSS/kgBOD d, $0.067mgNO_3-N/mgVSS{\cdot}d$, $0.028mgNH_4-N/mgVSS{\cdot}d$, 16.0 mgP/gVSS d and 2.1 mgP/gVSS d, respectively. The contents of nitrogen and phosphorus of biomass were 8.9% and 3.5% on an average.