• Title/Summary/Keyword: MAXIMUM STRENGTH

Search Result 3,770, Processing Time 0.031 seconds

Pigment Influence of High Density Polyethylene Electrical Strength (고밀도 폴리에틸렌의 전계 세기의 영향)

  • Choi, Yong-Sung;Wee, Sung-Dong;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.50-53
    • /
    • 2008
  • In this work, the $TiO_2$ pigment influence in HDPE dielectric strength was analyzed. Chemical and structural characterizations were made to identify changes during the processing and your influence in the electrical properties. Formulations containing 0, 0.5, 1, 2.5, 4 and 6 of titanium dioxide were processed by extrusion and injection molding with stabilization-antioxidants, ultraviolet stabilizers and plasticizers. The electrical strength tests were analyzed by the statistical distribution of Weibull, and the maximum likelihood method. The high concentrations present lower values to electrical strength. The $\beta$ parameter could be using to insulator particles dispersion. The $TiO_2$ concentration variation shows that these incorporations implicate strength values increase has a maximum (5,35MV/cm). High pigment concentration induces a little falls in property values. Observing the $\beta$ parameter, minimum experiment electric field (Ebmin) and electric strength value, found that the best electric perform formulation was the formulation with 2.5% $TiO_2$ weight.

  • PDF

Statistical Investigateion of Fatigue Life Predictioin of the Spot Welded Lap Joint(II) ; to verity reliabilty of fatigue strength estimatioin method (Spot 용접이음재의 피로수명 예측에 관한 확률적 검토(II) : 피로강도 평가법의 신뢰성 검증)

  • 손일선;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.242-249
    • /
    • 1999
  • Spot welding is very important and useful technology in fabrication of an automobile body structure. Because fatigue strength of the spot welding point is however considerably lower than parent metal due to stress concentration at the nugget edge, accurate stress analysis and fatigue stength evaluation of spot welded lap joint are very important to valuate the reliability and durability of automobile body structure and to establish a criterion of long life fatigue design. Many invetigators have studied so far onsystematic fatigue strength evaluation with various methods. It is however necessary to verify their reliability and abailability for practical application to fatigue design of spot welded structure, Thus,in this study, fatigue strength evaluation methods of spot welded lap joint. which are the maximum principal stress method. the fracture and availability with the Weibull probability distribution. From the results, it was found that reliability and availability withe the Weibull probaility distribution. From the results, it was found that reliability and availability of the suggest fatigue strength estimation methods methods were higher than $\Delta$P-$N_f$ relation. However, among them , reliability of the maximum pricipal stress method was the highest.

  • PDF

Study on the Static and Dynamic Structural Analysis Procedure of Excavators (굴삭기의 정적/동적 강도 해석법에 대한 연구)

  • Choung, Joon-Mo;Kim, Gyu-Sung;Jang, Young-Sik;Choe, Ick-Hung;Heo, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.537-543
    • /
    • 2003
  • This paper presents the improved procedure to assess static and dynamic strength of crawler type excavators. A fully integrated model including front attachment and chassis was prepared for structural analysis. In this paper, two types of loading input methods were investigated and the method imposing digging force directly on bucket tooth was more convenient than imposing cylinder reaction force on cylinder pin even if the two methods showed no discrepancy in analysis results. Static strength analysis was carried out for eight analysis scenarios based on two extreme digging positions, maximum digging reach position and maximum digging force positions. The results from static strength analysis were compared with measured stresses, cylinder pressures and digging forces and showed a good quantitative agreement with measured data. Dynamic strength analysis was carried out for simple reciprocation of boom cylinders. It was recognized that the effect of compressive stiffness of hydraulic oil was very important for dynamic structural behavior. The results from dynamic strength analysis including hydraulic oil stiffness were also compared with measured acceleration data and showed a qualitative agreement with measured data.

  • PDF

Effects of Alloying Elements on the Mechniacal Properties of Hardened and Austempered 3.60%C-2.50wt%Si Ductile Cast Irons (3.60wt%C-2.50wt%Si 구상흑연주철의 경화 및 오스템퍼링 처리시 기계적 성질에 미치는 합금 원소의 영향)

  • Park, Jung-Jee;Seo, Gap-Sung;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.28 no.6
    • /
    • pp.273-281
    • /
    • 2008
  • Effects of alloying elements on the mechanical properties of hardened and austempered 3.60wt%C - 2.50wt%C ductile cast iron were investigated. Strength and hardness were increased and ductility was decreased as the amount of alloying element increased. The increasing effect of copper addition on the strength was the most pronounced. The strength and hardness were greatly increased and ductility was decreased by hardening. The effect of alloying element on the mechanical properties of the hardened ductile cast iron was not so pronounced due to the high contents of C and Si. The strength and hardness of austempered ductile cast iron were greatly increased, meanwhile the difference of strength from that of hardened one was not so big. The ductility of the former was higher than that of the latter. The strength and ductility of austempered ductile cast iron with 0.25%Mn were the maximum of all Mn added ones. The maximum strength of that was obtained with the addition of 0.80wt%Cu or 2.00wt%Ni along with this amount of Mn added.

Fatigue Life Analysis of Spot Weldment of Cold Rolled and High Strength Steel Using FEM (FEM에 의한 일반냉연강판 및 고장력강판의 점용접 피로수명해석)

  • Yu, Hyo-Sun;Yang, Sung-Mo;Kang, Hee-Yong;Kim, Hong-Gun;Kim, Kyu-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2008
  • Cold rolled and high strength steel were used for vehicle bodys to satisfy environmental regulation and improve fuel ratio. This paper presented a method far determining the fatigue life of cold rolled steel sheet EZNCEN and high strength steel sheet HS40R spot weldment used in vehicles. We can estimate the fatigue life of the spot weldments from the MSC/FATIGUE using the finite element method. The maximum load is found in the nugget part of both surfaces. The cold rolled steel and the high strength steel showed the maximum stress 746MPa and 730MPa in the effective nugget part when the weld current was 8KA and 7KA, respectively. Also the some weld current of the cold rolled steel and high strength steel is applied, the fatigue life of high strength steel is obtained about four times longer than the cold rolled steel.

Pigment Influence in High Density Polyethylene Electrical Strength (고밀도 폴리에틸렌에 있어서 전계의 세기의 영향)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.331-332
    • /
    • 2007
  • In this work, the TiO2 pigment influence in HDPE dielectric strength was analyzed. Chemical and structural characterizations were made to identify changes during the processing and your influence in the electrical properties, formulations containing 0, 0.5, 1, 2.5, 4 and 6 of titanium dioxide were processed by extrusion and injection molding with stabilization-antioxidants, ultraviolet stabilizers and plasticizers. The electrical strength tests were analyzed by the statistical distribution of Weibull, and the maximum likelihood method. The high concentrations present lower values to electrical strength. The parameter could be using to insulator panicles dispersion. The TiO2 concentration variation shows that these incorporations implicate strength values increase has a maximum (5,35MV/cm). High pigment concentration induces a little falls in property values. Observing the parameter, minimum experiment electric field (Ebmin) and electric strength value, found that the best electric perform formulation was the formulation with 2.5% TiO2 weight.

  • PDF

Effects of Grip Adjustable Ergonomic Pruning Shears on Grip Strength and Fatigue of Fingers (파지조절 가능한 인간공학 전지가위가 악력과 손가락들의 피로도에 미치는 영향)

  • Her, Jin-Gang
    • Journal of Korean Academy of Medicine & Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.73-80
    • /
    • 2018
  • Objective: We developed an ergonomic pruning shears that allows the user to freely adjust the width of the grip and conducted this study to examine the effects of the pruning shears on grip strength and the fatigue of the fingers. Method: The maximum grip strength was first measured with an digital dynamometer, and the maximum grip strength was measured again after the subjects repeated scissoring 100 times using general pruning shears or ergonomic pruning shears. Borg's CR-10 scale was used to measure subjective fatigue after using the two pruning shears. Results: When the grip strength values after using the two pruning shears were compared with each other the mean grip strength after using ergonomic pruning shears was 27.69 kg, which was higher than that after using general pruning shears, 25.73 kg (p<.05). The subjective fatigue when the two pruning shears were used was shown to be 3.6 points for general pruning shears and 1.73 points for ergonomic pruning shears (p<.05). Conclusion: After repeating scissoring 100 times, the fatigue of the fingers was lower when ergonomic pruning shears were used than when general pruning shears were used and grip strength was higher when ergonomic pruning shears were used than when general pruning shears were used.

Strength prediction and correlation of concrete by partial replacement of fly ash & silica fume

  • Kanmalai C. Williams;R. Balamuralikrishnan
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.317-325
    • /
    • 2023
  • Strength prediction and correlation of concrete is done using experimental and analytical methods. Main objective is to correlate the experimental and simulated values of compressive strength of concrete mix using Fly Ash (FA) and Silica Fume (SF) by partial replacement of cement in concrete. Mix proportion was determined using IS method for M40grade concrete. Hundred and forty-seven cubes were cast and tested using Universal Testing Machine (UTM). Genetic Algorithm (GA) model was developed using C++ program to simulate the compressive strength of concrete for various proportions of FA and SF replacements individually at 3% increments. Experiments reveal that 12 percent silica fume replacement produced maximum compressive strength of 35.5 N/mm2, 44.5 N/mm2 and 54.8 N/mm2 moreover 9 percent fly ash replacement produced a maximum strength of 31.9 N/mm2, 37.6 N/mm2 and 51.8 N/mm2 during individual material replacement of concrete mix. Correlation coefficient for each curing period of fly ash and silica fume replaced mix were acquired using trend lines. The correlation coefficient is found to be approximately 0.9 in FA and SF replaced mix irrespective of the mix proportion and age of concrete. A higher and positive correlation was found between the experimental and simulated values irrespective of the curing period in all the replacements.

Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint considered Residual Stress (잔류응력을 고려한 IB형 spot 용접이음재의 피로강도 평가)

  • 손일선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.127-131
    • /
    • 1997
  • In systematic and orderly estimation of fatigue strength of the spot welded lap joints, because the influence of residual stress of fatigue crach initiation and growth is not negligible, there need to estimate fatigue strength considered residual stress at near spot weld part of the lap joints. Therefore, in this thesis, peformed stress distribution and residual stress analysis at near the spot weld part by F.E.M and X-ray diffraction method, and obtained the maximum principal stress considered residual stress at nugget edge by superposing residual stress at nugget edge by superposing their results. From the results obtained above, we could find that fatigue strength of the IB-type spot welded lap joints was rearranged by the maximum principal stress considered residual stress at nugget edge and was entirely low about 13 percents compare with that neglected residual stress.

  • PDF

Calculation of Crack Width and Crack Spacing of High-Strength Concrete Members (고강도콘크리트 부재의 균열폭 및 균열간격 계산에 관한 연구)

  • Jung, Gi-Oh;Lee, Gi-Yeol;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.227-232
    • /
    • 2002
  • This paper describes a calculation of an average crack spacing and the maximum crack width for the high-strength concrete tensile and flexural members. Based on the uniform bond stress distribution of the average steel and concrete strains over the transfer length, the crack spacing and the crack width are proposed to utilize influence of the concrete strength and the cover thickness. This analytical results presented in this paper indicate that the proposed equations can be more effectively estimated the maximum crack width and the average crack spacing of the reinforced concrete flexural and tensile members.

  • PDF