• Title/Summary/Keyword: MATLAB program

Search Result 445, Processing Time 0.033 seconds

Flow Simulation of High Flow Concrete using Incompressible Smoothed Particle Hydrodynamics (ISPH) Method (ISPH 기법을 이용한 고유동 콘크리트의 유동 해석)

  • Kim, Sang-Sin;Chung, Chul-Woo;Lee, Chang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • A three-dimensional flow simulation model for high flow concrete was developed using Incompressible Smoothed Particle Hydrodynamics (ISPH), which can solved Navier-Stokes equation with the assumption of a fluid to be incompressible. For the simulation, a computer program code for ISPH was implemented with MATALB programming code. A piecewise cubic spline function was used for the kernel function of ISPH. Projetion method was used to calculate the velocity and pressure of particles as a function of time. Fixed ghost particle was used for wall boundary condition. Free surface boundaries were determined by using virtual density of particles. In order to validate the model and the code, the simulation results of slump flow test, $T_{500}$ test and L-box test were compared with experimental ones. The simulation results were well matched with the experimental results. The simulation described successfully the characteristics of the flow phenomenon according to the change of the viscosity and yield stress of high flow concrete.

A Fluid Analysis Study on Centrifugal Pump Performance Improvement by Impeller Modification (원심펌프 회전차 Modification시 성능개선에 관한 유동해석 연구)

  • Lee, A-Yeong;Jang, Hyun-Jun;Lee, Jin-Woo;Cho, Won-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Centrifugal pump is a facility that transfers energy to fluid through centrifugal force, which is usually generated by rotating the impeller at high speed, and is a major process facility used in many LNG production bases such as vaporization seawater pump, industrial water and fire extinguishing pump using seawater. to be. Currently, pumps in LNG plant sites are subject to operating conditions that vary depending on the amount of supply desired by the customer for a long period of time. Pumps in particular occupy a large part of the consumption strategy at the plant site, and if the optimum operation condition is not available, it can incur enormous energy loss in long term plant operation. In order to solve this problem, it is necessary to identify the performance deterioration factor through the flow analysis and the result analysis according to the fluctuations of the pump's operating conditions and to determine the optimal operation efficiency. In order to evaluate operation efficiency through experimental techniques, considerable time and cost are incurred, such as on-site operating conditions and manufacturing of experimental equipment. If the performance of the pump is not suitable for the site, and the performance of the pump needs to be reduced, a method of changing the rotation speed or using a special liquid containing high viscosity or solids is used. Especially, in order to prevent disruptions in the operation of LNG production bases, a technology is required to satisfy the required performance conditions by processing the existing impeller of the pump within a short time. Therefore, in this study, the rotation difference of the pump was applied to the ANSYS CFX program by applying the modified 3D modeling shape. In addition, the results obtained from the flow analysis and the curve fitting toolbox of the MATLAB program were analyzed numerically to verify the outer diameter correction theory.

Comparison of Ultrasound Image Quality using Edge Enhancement Mask (경계면 강조 마스크를 이용한 초음파 영상 화질 비교)

  • Jung-Min, Son;Jun-Haeng, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Ultrasound imaging uses sound waves of frequencies to cause physical actions such as reflection, absorption, refraction, and transmission at the edge between different tissues. Improvement is needed because there is a lot of noise due to the characteristics of the data generated from the ultrasound equipment, and it is difficult to grasp the shape of the tissue to be actually observed because the edge is vague. The edge enhancement method is used as a method to solve the case where the edge surface looks clumped due to a decrease in image quality. In this paper, as a method to strengthen the interface, the quality improvement was confirmed by strengthening the interface, which is the high-frequency part, in each image using an unsharpening mask and high boost. The mask filtering used for each image was evaluated by measuring PSNR and SNR. Abdominal, head, heart, liver, kidney, breast, and fetal images were obtained from Philips epiq5g and affiniti70g and Alpinion E-cube 15 ultrasound equipment. The program used to implement the algorithm was implemented with MATLAB R2022a of MathWorks. The unsharpening and high-boost mask array size was set to 3*3, and the laplacian filter, a spatial filter used to create outline-enhanced images, was applied equally to both masks. ImageJ program was used for quantitative evaluation of image quality. As a result of applying the mask filter to various ultrasound images, the subjective image quality showed that the overall contour lines of the image were clearly visible when unsharpening and high-boost mask were applied to the original image. When comparing the quantitative image quality, the image quality of the image to which the unsharpening mask and the high boost mask were applied was evaluated higher than that of the original image. In the portal vein, head, gallbladder, and kidney images, the SNR, PSNR, RMSE and MAE of the image to which the high-boost mask was applied were measured to be high. Conversely, for images of the heart, breast, and fetus, SNR, PSNR, RMSE and MAE values were measured as images with the unsharpening mask applied. It is thought that using the optimal mask according to the image will help to improve the image quality, and the contour information was provided to improve the image quality.

Development of 3D Viewer for Tree Cavity using Pulse Ultrasound (펄스 초음파를 이용한 수목 공동부 3D 구현 프로그램 제작)

  • Son, Jungmin;Kang, Sunghoon;Moon, Jongwook;Yoon, Seokkyu;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.265-271
    • /
    • 2021
  • The pattern of the tree's internal swelling depends on many causes. Since it is difficult to detect these various causes of swelling with a general method, if the state of swelling for a long time cannot be confirmed, serious damage to the trees may occur due to enlargement of the swelling area. In the method of acquiring a tree tomography image, an impulse passing through the tree is generated by tapping the sensor with a rubber mallet, and the moving speed is recorded. In this paper, to measure cracks, cavities, and swelling due to physical damage, we developed a 3D viewer that can know the internal state of a tree using a tree cross-section image acquired from Arbotom to determine the degree of swelling inside the tree. Based on this, we tried to present data that can be referred to when surgical operation of trees is required. In order to acquire a tomographic image of a tree, 6 sensors were attached to the three Yangpala and Maple trees, and a 1 m-long tree was measured using the Arbotom program, and a 3D image was implemented through the 3D Viewer created using MATLAB. In addition to simply acquiring images, the cross-sectional length and volume of the tree were measured. In the actually produced 3D Viewer, the length of the part where the swelling of the maple tree occurred was 33.12 cm, and the swelling of the yangpala tree was measured as 21.41 cm. The volume of the maple tree was measured to be 78.832 ㎤. As a result of comparing the cross-sectional image of the Arbotom and the 3D image, the same result as the real aspect of the tree was obtained, so it can be judged that the reliability of the manufactured software is also secured, and data to be applied to the surgical tree operation through the created Viewer is provided. It is believed that the damage will be minimized.

The mathematical model of temperature dependent growth of Scuticociliate Miamiensis avidus in vitro and in vivo conditions (In vitro와 in vivo에서의 온도에 따른 스쿠티카충 성장의 수리 모델)

  • Oh, Chun-Young
    • Journal of fish pathology
    • /
    • v.26 no.2
    • /
    • pp.65-75
    • /
    • 2013
  • Population growth equation of scuticociliate Miamiensis avidus was obtained from the experimental results of in vitro culture condition to estimate the growth rate and carrying capacity from the growth equation. In addition, intraperitoneal infections into olive flounder Paralichthys olivaceus were carried out into 2 different conditions: different concentrations of M. avidus in same water temperature and same concentration of M. avidus in different water temperatures. Olive flounder mortality was threshold dependent with both the temperature and M. avidus density parameters. In this paper, we propose a mathematical model to study M. avidus growth in olive flounder based upon the interactions between parasite and host. The mathematical model was logistic growth differential equation (1.2). The parameters were found with Matlab program through the Levenberge-Marquardt method. In theorem, equilibrium values between the infected fish population and dead population could found. Our equilibrium points were a stable equilibrium and an unstable equilibrium. From the equation (1.6), it was possible to predict the amount of cumulative mortality of olive flounder along with the time after M. avidus infection.

SPM을 이용한 남여별 ADHD 환자 뇌 SPECT 영상의 분석

  • 박성옥;신동호;권수일;조철우;윤석남;오은영
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.43-43
    • /
    • 2003
  • 목적 : 남, 여 ADHD 환자에서 뇌 혈류상태의 차이점을 알아보기 위하여, 다른 정신과적 질환이 없는 ADHD 환자의 SPECT 뇌혈류 영상에 대하여 SPM을 통한 뇌 혈류상태의 차이점을 비교분석하였다. 대상 및 방법 : 남자 ADHD 환자군 51 명 (4-11세, 평균 9.0세)과 정상군 8명(6-17세, 평균, 9.6세) 그리고, 여자 ADHD 환자군 13명(6-12세 평균 9.0세)과 정상군 4 명(6-12세 평균 9.0세)의 SPECT영상을 비교분석하였다. 방사성의약품 $^{99m}$ Tc-ECD 0.33mCi/kg을 환자의 정맥내에 주사하고 30분후 잠을 재운상태에서 Multi SPECT3 camera를 이용하여 영상을 기록하였다. Matlab을 이용한 SPM program에서 남여별 ADHD환자의 뇌혈류지도 영상을 비교하였으며, BOLD(blood oxygenation level dependent effect) data plotting을 이용하여 혈류증가율과 감소율을 분석하였다. 결과 : 1) 남자 ADHD환자군의 혈류증가부위의 경우, P<0.02 에서 대상회전 (cingulate gyrus)이 나타나 P<0.05까지 한 부위에서만 나타났으며, 정상군에 비하여 15.61%의 혈류증가율을 나타내었다. 혈류감소부위로는 P<0.004에서 좌측 대뇌 도이랑 (insula gyrus), P<0.005에서 우측 대뇌 측두엽이랑, P<0.007에서는 우측 대뇌 전두엽아래이랑에서 각각 감소되었으며 P<0.01에서는 좌측 대뇌 전두엽 아래이랑에서도 나타났다. ADHD 환자군은 정상군에 비하여 각각의 클러스터에서 평균 14.97-15.28%의 혈류 감소율을 보였다. 뇌 혈류의 증가율과 감소율은 유의 수준변화에 영향을 받지 않았다. 2) 여자 ADHD환자의 혈류증가의 경우 P<0.003에서 소뇌 후엽 중앙부위, P<0.005에서는 좌측 대뇌 변연엽, P<0.009에서는 좌측 대뇌 측두엽 그리고 P<0.02에서는 소뇌 후엽을 비롯하여 9개부분에서 혈류증가 클러스터가 나타났으며, ADHD환자군은 정상군에 비하여 24.68-31.25%의 혈류증가율을 나타내었다. 혈류감소를 나타낸 부위로는 P<0.001에서 좌측 대뇌의 렌즈핵(lentiform nucleus), P<0.003에서 우측 대뇌의 렌즈핵 그리고 P<0.005에서 P<0.01까지 좌측 대뇌 측두엽중심에서 나타났다. 각각의 클러스터에서 평균 혈류감소율은 30.57-30.84%이었다. 결론 : 남여ADHD 환자의 혈류 증가와 감소부위는 서로 일치하지 않았으며 여자의 경우 혈류 증가와 감소율이 남자보다 더 크게 나타나, ADHD환자의 SPECT를 이용한 분석에서 남여환자를 동시에 분석하는 것 보다는 남여환자를 구분하여 실시하는 것이 더욱 정확한 진단정보를 제공할 수 있다고 판단된다.

  • PDF

Development of Device Measuring Real-time Air Flow in Greenhouse (온실 공기유동 계측 시스템 개발)

  • Noh, Jae Seung;Kwon, Jinkyoung;Kim, Yu Yong
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • This study was conducted to develop a device for measuring the air flow by space variation through monitoring program, which acquires data by each point from each environmental sensor located in the greenhouse. The distribution of environmental factors(air temperature, humidity, wind speed, etc.) in the greenhouse is arranged at 12 points according to the spatial variation and a large number of measurement points (36 points in total) on the X, Y and Z axes were selected. Considering data loss and various greenhouse conditions, a bit rate was at 125kbit/s at low speed, so that the number of sensors can be expanded to 90 within greenhouse with dimensions of 100m by 100m. Those system programmed using MATLAB and LabVIEW was conducted to measure distributions of the air flow along the greenhouse in real time. It was also visualized interpolated the spatial distribution in the greenhouse. In order to verify the accuracy of CFD modeling and to improve the accuracy, it will compare the environmental variation such as air temperature, humidity, wind speed and $CO_2$ concentration in the greenhouse.

Preliminary Study on Performance Evaluation of a Stacking-structure Compton Camera by Using Compton Imaging Simulator (Compton Imaging Simulator를 이용한 다층 구조 컴프턴 카메라 성능평가 예비 연구)

  • Lee, Se-Hyung;Park, Sung-Ho;Seo, Hee;Park, Jin-Hyung;Kim, Chan-Hyeong;Lee, Ju-Hahn;Lee, Chun-Sik;Lee, Jae-Sung
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.51-61
    • /
    • 2009
  • A Compton camera, which is based on the geometrical interpretation of Compton scattering, is a very promising gamma-ray imaging device considering its several advantages over the conventional gamma-ray imaging devices: high imaging sensitivity, 3-D imaging capability from a fixed position, multi-tracing functionality, and almost no limitation in photon energy. In the present study, a Monte Carlo-based, user-friendly Compton imaging simulator was developed in the form of a graphical user interface (GUI) based on Geant4 and $MATLAB^{TM}$. The simulator was tested against the experimental result of the double-scattering Compton camera, which is under development at Hanyang University in Korea. The imaging resolution of the simulated Compton image well agreed with that of the measured image. The imaging sensitivity of the measured data was 2~3 times higher than that of the simulated data, which is due to the fact that the measured data contains the random coincidence events. The performance of a stacking-structure type Compton camera was evaluated by using the simulator. The result shows that the Compton camera shows its highest performance when it uses 4 layers of scatterer detectors.

  • PDF

Simulation of lesion-to-liver contrast difference curves in Dynamic Hepatic CT with Pharmacokinetic Compartment Modeling (Pharmacokinetic Compartment Modeling을 이용한 나선식 CT에서의 간암-간 대조 곡선의 Simulation)

  • S.J. Kim;K.H. Lee;J.H. Kim;J.K. Han;B.G. Min
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.173-182
    • /
    • 1999
  • Contrast-enhanced CT has an important role in assessing liver lesions, the optimal protocol to get most effective result is not clear. The mein goal when deciding injention protocol is to optimize lesion detectability with rapid scanning when lesion to liver contrast is maximum. For this purpose, we developed a physiological model of the contrast medium enhancement based on the compartment modeling and pharmacokinetics. Blood supply to liver is achieved in two paths. This dual supply characteristic distinguishes the CT enhancement of liver from that of the other organs. The first path is by hepatic artery and to second, by portal vein. However, it is assumed that only gepatic artery can supply blood to hepatocellular carcinoma(HCC) compartment, thus, the difference of contrast enhancement is resulted between normal liver tissue and hepatic tumor. By solving differential equations for each compartment simultaneously using the computer program Matlab, CT contrast-enhancement curves were simulated. The simulated enhancement curves for aortic, hepatic, portal vein, and HCC compartments were compared with the mean enhancement curves from 24 patients exposed to the same protocols as the simulation. These enhancement curves showed a good agreement. Furthermore, we simulated lesion-to-liver curves for various injection protocols, and the effects were analyzed. The variables to be considered in the injection protocol were injection rate, dose, and concentration of contrast material. These data may help to optimize scanning protocols for better diagnosis.

  • PDF

Seismic Performance Evaluation of a Cone-type Friction Pendulum Bearing System (원추형 마찰진자베어링의 내진성능평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Park, Kyung-Rock;Kim, Nam-Sik;Jung, Duk-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.23-33
    • /
    • 2011
  • In this study, a CFPBS (Cone-type Friction Pendulum Bearing System) was developed which controls the acceleration delivered to the structure to prevent damage and degradation of the critical communication equipment in case of an earthquake. The isolation performance of the CFPBS was evaluated by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced from the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with the seismic isolator system consisting of four CFPBSs. In order to verify its earthquake-resistant performance, a numerical analysis program was created from the equation of the CFPBS induced from the equations of motion. A simplified theoretical equation of the CFPBS was proposed to manufacture the equipment which could demonstrate the necessary performance. Artificial seismic waves satisfying the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and skew angle of the friction surface were considered for numerical analysis with El Centro NS (1940), Kobe NS (1995) and artificial seismic waves. The CFPBS isolation performance evaluation was based on the results of numerical analysis and the executed comparative analysis between the results from numerical analysis and the simplified theoretical equation under the same conditions.