• Title/Summary/Keyword: MATLAB Simulation

Search Result 1,401, Processing Time 0.036 seconds

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

Design of a Neural Network PI Controller for F/M of Heavy Water Reactor Actuator Pressure (신경회로망과 PI제어기를 이용한 중수로 핵연료 교체 로봇의 구동압력 제어)

  • Lim, Dae-Yeong;Lee, Chang-Goo;Kim, Young-Baik;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1255-1262
    • /
    • 2012
  • Look into the nuclear power plant of Wolsong currently, it is controlled in order to required operating pressure with PI controller. PI controller has a simple structure and satisfy design requirements to gain setting. However, It is difficult to control without changing the gain from produce changes in parameters such as loss of the valves and the pipes. To solve these problems, the dynamic change of the PI controller gain, or to compensate for the PI controller output is desirable to configure the controller. The aim of this research and development in the parameter variations can be controlled to a stable controller design which is reduced an error and a vibration. Proposed PI/NN control techniques is the PI controller and the neural network controller that combines a parallel and the neural network controller part is compensated output of the controller for changes in the parameters were designed to be robust. To directly evaluate the controller performance can be difficult to test in real processes to reflect the characteristics of the process. Therefore, we develope the simulator model using the real process data and simulation results when compared with the simulated process characteristics that showed changes in the parameters. As a result the PI/NN controller error and was confirmed to reduce vibrations.

A Design of Adaptive Channel Estimate Algorithm for ICS Repeater (ICS 중계기를 위한 적응형 채널추정 알고리듬 설계)

  • Lee, Suk-Hui;Song, Ho-Sup;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.19-25
    • /
    • 2009
  • In this thesis, design effective elimination interference algorithm of ICS repeat system for repeater that improve frequency efficiency. Error convergence speed and accuracy of LMS Algorithm are influenced by reference signal. For improve LMS Algorithm, suggest Adaptive channel estimate algorithm. For using channel characteristic, adaptive channel estimate algorithm make reference signal similar interference signal by convolution operation and complement LMS algorithm demerit. For make channel similar piratical channel, apply Jake's Rayleigh multi-path model that random five path with 130Hz Doppler frequency. LMS algorithm and suggested adaptive channel estimate algorithm that have 16 taps apply to ICS repeat system under Rayleigh multi-path channel, so simulate with MATLAB. According to simulate, ICS repeat system with LMS algorithm show -40dB square error convergent after 150 datas iteration and ICS repeat system with adaptive channel estimate algorithm show -80dB square error convergent after 200 datas iteration. Analyze simulation result, suggested adaptive channel estimate algorithm show more three times iteration performance than LMS algorithm, and 40dB accuracy.

Threshold Level Setting of a Receiver in Optical Subscriber Network with Manchester Coded Downstream and NRZ Upstream Re-modulation for the Improvement of Upstream Data Ratios (맨체스터 부호로 코딩된 하향신호의 재변조를 이용한 광가입자 망에서 상향속도개선을 위한 임계치의 설정)

  • Park, Sang-Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.175-185
    • /
    • 2011
  • The threshold level of a receiver is analyzed for the simplification of system and the improvement of upstream data ratios in optical subscriber network of which the upstream date rate and the optical transmitted power are changed to meet the requested BER (Bit Error Rate) defined per interactive multimedia services. In asynchronous optical subscriber network of which the upstream to downstream data ratios are 1:1/2, 1:1/4, 1:1/8 and 1:1/16 with manchester coded downstream and NRZ (Non Return to Zero) downstream re-modulation, the BER performance is theoretically analyzed and it is performed by simulation with MATLAB according to the four types of downstream data for four models. The results have shown that in the cases which the upstream to downstream data ratios are 1:1/4, 1:1/8 and 1:1/16 the conventional receiver with threshold level of 1/2 can be applied regardless of average received optical powers and the BER is not much deteriorated compared with using the optimal threshold level. In the case that the upstream to downstream data ratio is 1:1/2 the threshold level in an optical receiver could be fixed at 1/3 and the BER is not much deteriorated compared with using the optimal threshold level as the average received optical power increases.

Cortical Thickness Estimation Using DIR Imaging with GRAPPA Factor 2 (DIR 영상을 이용한 피질두께 측정: GRAPPA 인자 2를 이용한 비교)

  • Choi, Na-Rae;Nam, Yoon-Ho;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.1
    • /
    • pp.56-63
    • /
    • 2010
  • Purpose : DIR image is relatively free from susceptibility artifacts therefore, DIR image can make it possible to reliably measure cortical thickness/volume. One drawback of the DIR acquisition is the long scan time to acquire the fully sampled 3D data set. To solve this problem, we applied a parallel imaging method (GRAPPA) and verify the reliability of using the volumetric study. Materials and methods : Six healthy volunteers (3 males and 3 females; age $25.33{\pm}2.25$ years) underwent MRI using the 3D DIR sequence at a 3.0T Siemens Tim Trio MRI scanner. GRAPPA simulation was performed from the fully sampled data set for reduction factor 2. Data reconstruction was performed using MATLAB R2009b. Freesurfer v.4.3.0 was used to evaluate the cortical thickness of the entire brain, and to extract white matter information from the DIR image, Analyze 9.0 was used. The global cortical thickness estimated from the reconstructed image was compared with reference image by using a T-test in SPSS. Results : Although reduced SNR and blurring are observed from the reconstructed image, in terms of segmentation the effect was not so significant. The volumetric result was validated that there were no significant differences in many cortical regions. Conclusion : This study was performed with DIR image for a volumetric MRI study. To solve the long scan time of 3D DIR imaging, we applied GRAPPA algorithm. According to the results, fast imaging can be done with reduction factor 2 with little loss of image quality at 3.0T.

Vector Control for Wave Power Generation System using Permanent Magnet Linear Synchronous Generator (파력발전용 선형발전시스템의 벡터제어)

  • Park, Joon Sung;Hyon, Byong Jo;Yun, Junbo;Lee, Ju;Choi, Jang-Young;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.120-128
    • /
    • 2016
  • This paper describes power generation from sea waves by using linear permanent magnet generator. A buoy is placed on the ocean surface and connected to the generator. The wave energy is carried out from the movement of a buoy. An electrical conversion system is needed between the generator and the grid. For an analysis of the power system, the modeling of the linear generator and converter system was proceeded. This paper proposes vector control method for wave power generation system using linear generator. In order to verify the proposed method, simulation and experiment performed and the results support the validity of the control scheme.

Improvement of Received Optical Power Sensitivity in Asymmetric 2.5Gbps/1.2Gbps Passive Optical Network with Inverse Return to Zero(RZ) coded Downstream and NRZ upstream re-modulation (역 RZ 부호로 코딩된 하향신호의 재변조를 이용한 비대칭 2.5Gbps/622Mbps 수동 광가입자 망에서의 수신 감도의 개선)

  • Park, Sang-Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.65-72
    • /
    • 2010
  • We propose the asymmetric 2.5Gbps/622Mbps PON(Passive Optical Network) in order to reduce the bandwith of filter at receiver with inverse RZ(Return to Zero) code coded downstream and NRZ(Non Return to Zero) upstream re-modulation. I theoretically analyze BER(Bit Error Rate) performance and the power sensitivity with the optimal threshold level by performing simulation with MATLAB according to the types of downstream data. The results have shown that the optimal threshold level at the optical receiver could be saturated at 0.33 as the optical received power increase more than -26dBm to keep $10^{-12}$ of BER to a minimum. Also the power sensitivity is more improved by about 3dB by fixing the threshold level at 0.33 than the conventional receiver. The proposed system can be a useful technology for optical access networks with asymmetric upstream and downstream data rates because the optical receiver can be used without controlling threshold levels and that does not require a light source in optical network unit (ONU) and its control circuits in the optical line termination (OLT).

Development of Target-Controlled Infusion System in Plasma Concentration. PART1 : Establishment of Pharmacokinetic Model and Verification (혈중 목표 농도 자동 조절기(TCI) 개발 PART1 : 약동학적 모델의 수립과 검증)

  • 안재목;길호영
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.341-349
    • /
    • 2002
  • The target controlled infusion(TCI) pump system is a logical approach to the development of improved administration techniques of an intravenous anaesthetic agent. The principle of TCI system is based on an understanding of the pharmacokinetic properties, three or four compartment model. The TCI system is optimal and flexible control of the plasma drug concentration. But the clinical goal is always to achieve a therapeutic drug effect, not a therapeutic concentration. So we developed the algorithm to target the concentration at the site of drug effect rather than the concentration in the plasma. If impulse drug is inputted into body, the decline of plasma concentration with time is shown, resulting in the expression of the differential equation. Therefore, we must reformulate our three-compartment model as four-compartment model with the effect compartment. And we tested plasma targeting and effect targeting algorithm by computer simulation using four-compartment model. So we developed the TCI capable of applying all intravenous drugs by adjusting individual pharmacokinetic parameters independently.

The Forecasting a Maximum Barbell Weight of Snatch Technique in Weightlifting (역도 인상동작 성공 시 최대 바벨무게 예측)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study was to predict the failure or success of the Snatch-lifting trial as a consequence of the stand-up phase simulated in Kane's equation of motion that was effective for the dynamic analysis of multi-segment. This experiment was a case study in which one male athlete (age: 23yrs, height: 154.4cm, weight: 64.5kg) from K University was selected The system of a simulation included a multi-segment system that had one degree of freedom and one generalized coordinate for the shank segment angle. The reference frame was fixed by the Nonlinear Trans formation (NLT) method in order to set up a fixed Cartesian coordinate system in space. A weightlifter lifted a 90kg-barbell that was 75% of subject's maximum lifting capability (120kg). For this study, six cameras (Qualisys Proreflex MCU240s) and two force-plates (Kistler 9286AAs) were used for collecting data. The motion tracks of 11 land markers were attached on the major joints of the body and barbell. The sampling rates of cameras and force-plates were set up 100Hz and 1000Hz, respectively. Data were processed via the Qualisys Track manager (QTM) software. Landmark positions and force-plate amplitudes were simultaneously integrated by Qualisys system The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 9Hz calculated with Andrew & Yu's formula. The input data of the model were derived from experimental data processed in Matlab6.5 and the solution of a model made in Kane's method was solved in Matematica5.0. The conclusions were as follows; 1. The torque motor of the shank with 246Nm from this experiment could lift a maximum barbell weight (158.98kg) which was about 246 times as much as subject's body weight (64.5kg). 2. The torque motor with 166.5 Nm, simulated by angular displacement of the shank matched to the experimental result, could lift a maximum barbell weight (90kg) which was about 1.4 times as much as subject's body weight (64.5kg). 3. Comparing subject's maximum barbell weight (120kg) with a modeling maximum barbell weight (155.51kg) and with an experimental maximum barbell weight (90kg), the differences between these were about +35.7kg and -30kg. These results strongly suggest that if the maximum barbell weight is decided, coaches will be able to provide further knowledge and information to weightlifters for the performance improvement and then prevent injuries from training of weightlifters. It hopes to apply Kane's method to other sports skill as well as weightlifting to simulate its motion in the future study.

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.